
CueCode: Humanize APIs, without the headache

CS 410W

Lab 1 draft

John P. Hicks

08 November 2024

CueCode: Humanize APIs, without the headache Hicks 1

Table of Contents

1 Introduction .. 2

2 CueCode Product Description.. 2

2.1 What does it do? .. 3

2.2 Significance, Uniqueness and Innovation ... 3

2.3 What It Accomplishes ... 3

2.4 Problem Solution ... 4

2.5 Major Components (Hardware/Software) ... 4

3 Identification of Case Study... 5

4 CueCode Product Prototype Description ... 6

4.1 Prototype Architecture (Hardware/Software).. 6

4.2 Prototype Features and Capabilities .. 7

4.3 Prototype Development Challenges .. 7

5 Conclusion ... 8

6 Glossary ... 10

7 References .. 12

Listing of Figures

Figure 1 Two use-cases showing CueCode's API payload generation concept. 6

CueCode: Humanize APIs, without the headache Hicks 2

1 Introduction

In CS410 and CS 411W, students will produce a software-based solution to a real-world

problem. The problem Team RED seeks to solve is that of creating a framework for turning

natural language into REST (Representational State Transfer) API (Application programming

interface) calls, using a Large Language Model (LLM).

The software solution is called CueCode.

Recent advances in LLM technology allow more generalized content generation based on

foundation models. As such, LLM focused tooling has exploded onto the market (Uspenskyi,

2024). Despite these advances, the application of LLMs to the problem of turning natural

language into REST API payloads has not seen a mature implementation yet.

 Because of the lack of standardized frameworks for this use case, software developers are

forced to learn LLM technology and build one-off solutions to generating API payloads from

natural language. This requires extra cost in time and staff. Furthermore, progress on making

applications use AI features is stopped by the risks involved in trusting LLMs’ decision-making

capabilities (Nexus, 2024; Tyen, 2024); any good solution to the REST API payload generation

problem must include the opportunity for humans or business rules to validate the payload before

it is sent.

2 CueCode Product Description

 CueCode will offer a complete framework for application developers to integrate with a

service for intelligently translating natural language to REST API payloads. CueCode has first-

class support for humans and business rules in the loop of payload generation, as compared with

other approaches to the problem. This will allow developers to begin using AI in a risk-aware

CueCode: Humanize APIs, without the headache Hicks 3

manner while the technology is still improving, giving them a head start on preparing their

applications and service offerings for the years to come.

2.1 What does it do?

CueCode will translate natural language in text format into a series of correctly ordered

REST API payloads, which a client application can then issue to the target API after further

processing and/or human review of the API call suggestions.

CueCode will be a Web application that, with its supporting off-the-shelf services, offers

a Developer Portal experience for configuring the application and another service for performing

natural language to REST API translation suggestions. Developers can integrate their

applications with CueCode by using the CueCode client library for their programming language

of choice.

2.2 Significance, Uniqueness and Innovation

Getting an LLM to produce Web API payloads and validating them is a specialized task

requiring skills that many Web and fullstack developers do not possess (Uspenskyi, 2024).

Since these developers are those most often building business applications, a solution for

turning natural language into REST API payloads should take into consideration how easy it will

be for developers with other skillsets to use the tool. CueCode gives a good foundation for Web

and fullstack developers to turn natural language into REST API payloads in their applications.

2.3 What It Accomplishes

CueCode will be a full framework and service to turn natural language into Web API

payloads; nothing like it exists for arbitrary REST APIs. CueCode will work with any REST API

defined with an OpenAPI specification (OpenAPI Specification - Version 3.1.0 | Swagger, n.d.).

CueCode: Humanize APIs, without the headache Hicks 4

2.4 Problem Solution

Developers will upload their OpenAPI specification to CueCode’s Developer portal, then

answer questions about the API definition and structure as needed.

At runtime, the developer’s application can make a request to the CueCode service (itself

running over an HTTP Web API). The CueCode service will reply with the generated REST API

payload(s) corresponding to the natural language text input given. CueCode will provide client

libraries to make integration with the CueCode service seamless.

2.5 Major Components (Hardware/Software)

The CueCode solution will consist of a backend Python application, Ollama service,

PostgreSQL (Postgres) database with the pgvector extension, and a third-party identity provider.

The Python application will require use of the SpaCy library, which allows natural language

structuring and named entity recognition (SpaCy · Industrial-Strength Natural Language

Processing in Python, n.d.).

Ollama is an application that allows communication with LLMs over a standardized HTTP

API.

Both Ollama and SpaCy can be optimized when running on GPU hardware, so the CueCode

project team has arranged with the ODU Computer Science Systems Group (CS Systems Group)

to reserve GPU compute resources during the Spring 2025 semester, for our implementation

phase of the project (CS Systems group, personal communication Oct 2024).

CueCode will require hardware capable of running the following systems separately:

• Ollama 3.1 (minimum) running the 70 billion parameter model (minimum)

o The CS Systems group already runs Llama models (personal communication).

CueCode: Humanize APIs, without the headache Hicks 5

• A Python application using SpaCy, running on either CPU or GPU (Install SpaCy · SpaCy

Usage Documentation, n.d.).

3 Identification of Case Study

The two fictional user personas describe the people who would benefit from CueCode’s

development:

• Steve, a fullstack developer, needs to integrate text-to-API-payload features but finds he

needs to roll his own solution and understand NLP and LLM technology.

• Case study of Patricia, who needs to make an appointment at a hospital whose booking

system already uses REST APIs.

Two general use-cases are supported by CueCode (Figure 1 below):

1. Human review of suggested API calls

2. Batch processing of textual data, issuing API calls without human review.

CueCode: Humanize APIs, without the headache Hicks 6

Figure 1 Two use-cases showing CueCode's API payload generation concept.

4 CueCode Product Prototype Description

The CueCode prototype will limit the scope of features to those required to turn natural

language to REST API calls. Other potentially beneficial features will be excluded to focus on

delivering a working prototype of the core CueCode functionality.

4.1 Prototype Architecture (Hardware/Software)

The prototype will focus on REST APIs defined with OpenAPI specifications, using JSON

content types only.

 The application will use 12-factor application development practices, to allow for

containerization and other modern application development and deployment practices (Adam

CueCode: Humanize APIs, without the headache Hicks 7

Wiggins, 2017). To make deployment and development easier during prototyping, the Python

backend will group all functionality in one Python application, separated by modules.

 The Ollama, database, and authentication services will run as separate applications within

the CueCode system.

 Customers will connect their applications to CueCode via the client libraries supplied by

CueCode, using authentication credentials they obtain from the Developer Portal Web

application that developers can use to configure CueCode for use with their OpenAPI-defined

REST APIs.

4.2 Prototype Features and Capabilities

CueCode’s feature set will limit the kinds of API endpoints against which CueCode can be

configured. For example, GraphQL is another API format that CueCode would eventually

support if it were a real product.

Further research may also require hypermedia be included in the target API’s responses or

that the OpenAPI specifications used have certain properties to define relationships between

target API’s entities, to ease implementation for CS411.

Depending on the team’s work capacity, the prototype might or might not include non-core

features that could aid in the hypothetical commercialization of CueCode, such as an idea to

create a marketplace where commonly used Web APIs (e.g., Google Drive) can have their

CueCode configuration shared among CueCode users, making a Web 2.0 content sharing

dynamic (Sean Baker, personal communication Oct 2024).

4.3 Prototype Development Challenges

The prototype’s algorithm development is highly dependent on the quality of results from

the LLM.

CueCode: Humanize APIs, without the headache Hicks 8

Because LLMs are non-deterministic (Nexus, 2024; Uspenskyi, 2024), it may prove

difficult to instruct an LLM for a task so specific as selecting an API endpoint. Thurs, we face an

open question of whether CueCode should allow the LLM choose which REST API endpoint to

generate data, or for CueCode to implement a cosine similarity search algorithm, similar to work

done by Zafin’s engineers and others (Mark Needham, 2023; Zafin, 2023).

However the LLM is prompted, it will return a text response that needs to be validated to

confirm the API payload conforms to the OpenAPI specification. A combination of prompt

template and LLM Function calling can be used to ensure that the generated API payload is

compliant with the OpenAPI specification provided enforcement (Mark Needham, 2023;

Microsoft/Prompt-Engine, 2022/2024; Stanfordnlp/Dspy, 2023/2024).

Determining the relationships between entities will challenging. Doing so involves not just

parsing natural language into a structured grammatical parse tree using Spacy (Linguistic

Features · SpaCy Usage Documentation, n.d.), but it also requires mapping that structure to the

API’s entity relationship structure, as best CueCode can determine the API’s structure from the

API spec.

Another challenge will be developing a sorting algorithm for ensuring that the order in

which API calls are made doesn’t invalidate them because of unmet data dependencies. This

algorithm will require using placeholders for data not knowable until after an API call is made.

For example, this would happen when creating an entity, A, and several other entities related to

it. The algorithm would need to ensure that the API request to create A would be issued prior to

any requests creating entities that are related to A.

5 Conclusion

As seen by a few of our most challenging development questions, CueCode will remove

much complexity from the fullstack developer’s code, enabling natural language interaction with

CueCode: Humanize APIs, without the headache Hicks 9

REST APIs in a reusable, operationalized framework. CueCode will help developers leverage the

generation capabilities of LLMs, while also controlling the risks thereof. This allows developers

to humanize APIs, without the headache.

CueCode: Humanize APIs, without the headache Hicks 10

6 Glossary

API Payload (informal): Information that is sent together with an API request or response. This

data, which can be organized in JSON or XML forms, usually includes the details needed by the

client to comprehend the answer or by the server to carry out an action.

CueCode Developer Portal: A web-based platform that allows easy API creation with NLP-

generated requests and gives developers access to CueCode's tools, API configuration, and

integration workflow management.

HTTP Header: Additional metadata, such as the content type, authentication information, or

caching instructions, are transmitted with HTTP requests and answers. Headers give context,

which improves communication.

HTTP (Hypertext Transfer Protocol): The protocol that specifies the format and transmission of

messages between web clients and servers. The type of request is determined by the HTTP

methods (GET, POST, etc.).

Hypermedia – inter-linked content on the Internet. In the context of REST APIs, hypermedia

allows REST APIs to be more or less RESTful, as defined by Roy Fielding and following

authors (What Is Hypermedia?, n.d.).

Representational State Transfer (REST): A set of design guidelines for networked apps that use

stateless, cacheable, and consistent HTTP processes to facilitate interaction. Through the use of

CueCode: Humanize APIs, without the headache Hicks 11

common HTTP techniques, REST allows clients to communicate with servers by modifying

resources that match an expected structure.

URL (Uniform Resource Locator): A web address that indicates where a resource is located on

the internet. Protocol (such as HTTP/HTTPS), domain, and resource path are all included in

URLs. They are necessary in order to access and consult internet resources.

CueCode: Humanize APIs, without the headache Hicks 12

7 References

Adam Wiggins. (2017). The Twelve-Factor App. https://12factor.net/

Install spaCy · spaCy Usage Documentation. (n.d.). Install SpaCy. Retrieved November 8, 2024,

from https://spacy.io/usage

Linguistic Features · spaCy Usage Documentation. (n.d.). Linguistic Features. Retrieved

November 8, 2024, from https://spacy.io/usage/linguistic-features

Mark Needham. (2023, July 26). Returning consistent/valid JSON with OpenAI/GPT.

https://www.youtube.com/watch?v=lJJkBaO15Po

Microsoft/prompt-engine. (2024). [TypeScript]. Microsoft. https://github.com/microsoft/prompt-

engine (2022)

Nexus, P. (2024, July 16). Large language models make human-like reasoning mistakes,

researchers find. Tech Xplore. https://techxplore.com/news/2024-07-large-language-

human.html

OpenAPI Specification—Version 3.1.0 | Swagger. (n.d.). Retrieved September 10, 2024, from

https://swagger.io/specification/

SpaCy · Industrial-strength Natural Language Processing in Python. (n.d.). Retrieved September

26, 2024, from https://spacy.io/

Stanfordnlp/dspy. (2024). [Python]. Stanford NLP. https://github.com/stanfordnlp/dspy (2023)

Tyen, G. (2024, January 11). Can large language models identify and correct their mistakes?

Google Research. http://research.google/blog/can-large-language-models-identify-and-

correct-their-mistakes/

Uspenskyi, S. (2024, September 19). Large Language Model Statistics And Numbers (2024)—

Springs. https://springsapps.com/knowledge/large-language-model-statistics-and-

CueCode: Humanize APIs, without the headache Hicks 13

numbers-2024, https://springsapps.ai/blog/large-language-model-statistics-and-numbers-

2024

What Is Hypermedia? (n.d.). Smartbear.Com. Retrieved November 8, 2024, from

https://smartbear.com/learn/api-design/what-is-hypermedia/

Zafin, E. (2023, August 15). Bridging the Gap: Exploring use of Natural Language to interact

with Complex Systems. Engineering at Zafin. https://medium.com/engineering-

zafin/bridging-the-gap-exploring-using-natural-language-to-interact-with-complex-

systems-11c1b056cc19

