
CueCode

Team Red CS410W project

Elevator Pitch

CueCode lets a Web application generate API calls from natural language with minutes of development
time. “I booked an appointment for Patricia Davis for Thursday at 2pm” can become an API call to your
appointment booking backend with little additional programming effort.

A good API specification and a few key questions are all the model needs to start generating API
requests.

This allows rapid development of natural language processing features typical of those created during
the Generative AI boom, without having to take humans or business rules out of the loop. CueCode can
add AI features to your app without any backend code changes or specialized NLP or large language
model (LLM) skills.

CueCode is easy to integrate with existing services, making a better experience for users and
developers alike.

Table of Contents

● Team Bios

● Table of Contents

● Elevator Pitch

● The Societal Problem

● Solution

● Development Tools

● Major Functional Components

● References

● Appendix

Team Bios

Team Bios

The Societal Problem

● User interfaces don’t speak the user’s language, but users rely on apps to make things
happen.

● Things happen in Web apps through Web APIs.
● Developers are motivated to add Natural Language Processing (NLP) features to their

apps, but doing so is painstaking.
● We need a way to turn natural language into Web Application Programming Interface

(API) calls.
○ For example, if a client service representative were to provide input to an application in

natural language, “I called Patricia Davis and rescheduled her appointment from August
1st to August 16th.”, a Web API call like the following would be generated:

○ POST https://the-appointment-app.com/api/v1/appointments/

○ {"request":{"reschedule":{"last": "Davis", "first":"Patricia", "from":{"month":8,
"day":1,"year":2024}, "to":{"month":8, "day":1,"year":2024}}}}

2.1 Problem Statement

No framework exists for making Natural Language to API-call generation simple for fullstack
and Web developers.

Existing approaches:

● Microsoft created a paper describing their approach to using natural language to operate
on the Microsoft Graph API [CITE MS]. But that is just for the Graph API.

● Zafin claims to have built a system that does uniquely well at identifying which API
endpoint to call due to an embedding strategy for API calls [CITE Zafin]. The solution
focused on chatbot integration more than data entry.

● LLM Function Calling is promising, but it requires LLM prompt engineering and backend
programming to turn natural language to API calls, vs. the normal chatbot use-case.

=> Demand for API-call generation, but no simple, operationalized, and risk-aware tooling for it.

2.2 Problem Characteristics - use of API specs

● To solve the above problems, we must commoditize the process of turning natural language

into API calls against a large number of existing existing Web APIs.

○ (Reach for the pre-made tool.)

● Since APIs are commonly described with specifications, why not use those?
○ (Keep a clean contract between system components.)

● OpenAPI is the leading industry standard way to describe REST (REpresentational State

Transfer) APIs.

● However, there are no complete frameworks that leverage OpenAPI specifications when

turning natural language to REST API calls.

2.2 Problem Characteristics - NLP/LLM challenges

Problems with current NLP/LLM processing for creating API calls:

● Require awareness of prompt engineering and other more complex AI techniques
○ => Time/money upskilling fullstack and Web developers.

● The NLP tools for generating API calls today are stand-alone programs and libraries that

don't present a unified, opinionated solution.

○ => Developers are left building one-off solutions.
○ => Heavy boilerplate/in-house frameworks.

● Humans and application logic are kept out of the loop in approaches that perform every LLM

Function Call that the LLM requests; this is high-risk.

2.2 Problem Characteristics - NLP/LLM challenges

Problems with current NLP/LLM processing for creating API calls:

● Limiting Responses to fit an API Structure Is Difficult

● Lack of Understanding of Entity Relationships

● Absence of a Consistent Framework for Web Developers

2.3 Current Process Flow
A solution for generating API calls would ideally address all of these points.

● Design the interface between the customer’s application and the API call generation code.

● Encode the Web API structure for validation and generation. Options:
○ In Langchain, build Python classes in [9]

○ OpenAI, use schema specification [CITE] and hope for the best.

● Tag entities and their relationships in the natural language input.

● For JSON, prompt the LLM to use a certain JSON format. Verify output is in JSON format
(LangChain [9], Guidance AI [6])

● Tell the LLM about the API structure:
○ One-shot prompt is common in examples, but LLMs struggle to consistently generate responses that are

conformant to the spec [CITE].

● Once an API call is generated, confirm its structure (JSON or otherwise) conforms to the spec.

● Confirm that the sequence of data manipulations is consistent with the new/modified entities’

relationships.

● Make the existing application aware of LLM API call suggestions:
○ For interactive apps, show the suggestions to the user.

○ For batch processing, push the generated API calls through business logic.

No single application or framework on the market addresses all of these concerns..

3 Solution

CueCode will provide a comprehensive service for creating Web API calls from natural language input in

a risk-aware, accurate manner that puts developers - and, by extension, users - in control of when API

calls are invoked.

3.1 Solution Statement

What that means:

Developers will be able to use existing API specifications, which is CueCode makes understandable by LLMs, to
generate the content of their API calls in conformance with their API spec.

So, our client service representative can provide input to a booking application using CueCode in natural
language, “I called Patricia Davis and rescheduled her appointment from August 1st to August 16th.” The
application can then use CueCode’s libraries, which have been configured using documentation about the
structure of their data, to generate the following JSON:

POST https://the-appointment-app.com/api/v1/appointments/

{"request":{"reschedule":{"last": "Davis", "first":"Patricia", "from":{"month":8, "day":1,"year":2024},
"to":{"month":8, "day":1,"year":2024}}}}

Which would then be used by the booking application to perform the API call, which will change the appointment
date in their database, or prompt the user for additional information.

3.2 Solution Characteristics

Problem Characteristics

- Forcing end users to fill out lots of forms for
input is both limiting and tedious

- There is no easy way to implement using NLP
to parse user input for existing applications

- It is difficult to make LLMs aware of the
structure of data expected from a natural
language prompt

- There is no standardized solution for
translating natural language into structured
data

- Translating natural language into structured
data requires prompt engineering and other
skill sets that do not belong to a typical front
end or full stack developer

- LLM integration can cause data mutation and
incorrect parsing of information

Solution Characteristics

- CueCode leverages LLM technology to
parse natural language into structured
data to generate API calls, simplifying the
process of data entry.

- CueCode provides libraries to front end
and full stack developers to easily integrate
NLP into their existing applications

- Existing API specifications provide
machine-readable input to guide LLMs into
parsing user input from natural language,
saving developers time and resources

- CueCode facilitates Human-in-the-Loop
feedback to allow the end user to review
the generated data in the existing user
interface

3.3 Solution Process Flow (configuration)

At configuration time:

● Developers ensure their API specification is accurate.

● Developer uploads their API specification to CueCode.

● Developer answer a few configuration questions.

● CueCode stores the structure and requirements for the API to aid the LLM in generating

responses at runtime.

● All of this is transparent to the Developer’s customers/end-users.

Use CueCode in the developer’s app:

● Pass natural language text to
CueCode libraries.

● Let the CueCode service figure
out the structured data
contained in the text.

● Use CueCode’s extracted
structured data within the
existing application’s data model.
e.g.:

○ Show suggestions to the user
○ Perform API calls in a batch job
○ Validate through business rules
○ Whatever the use case requires

3.3 Solution Process Flow (runtime)

3.4 What it Will Do

● Will implement NLP capabilities to enable and understand natural language
● Will offer a user friendly interface (API) that developers can use
● Will provide a developer portal web application, where developers can upload API specifications
● Will enable quick iteration and prototyping by allowing developers to test and refine how their

applications respond to the natural language inputs.
● Will provide tools for customizing NLP models to fit specific domains/industries ensuring better

performance for unique use cases.
● Will include documentation and support resources to help developers implement and troubleshoot

various systems effectively.
● Will reduce the time and financial investment typically required for implementing NLP, making it

affordable for smaller teams and startups
● Will use API specifications, enabling context-aware replies that complement the distinct functionality and

data structure of each application.
● Will allow for real time analysis and response generation, enhancing user experience through immediate

feedback and interactions.

3.5 What it Will Not Do

● Will not replace human judgment when interpreting language in terms of making

subjective decisions beyond its programming.

● Will not act as an AI agent

● Will not be perfect, misinterpretations could occur with certain slang, ambiguous

phrasing or idioms.

● Will not be able to handle complex conversations.

● Will struggle with dialogues, conversations that require deeper understanding.

● Will not provide user-facing applications; developers will need to build their own

solutions and install any necessary software/applications they need.

● Will not automatically make API calls on users' behalf; requests must first have human

permission before being fulfilled.

● Will not have programming tutorials, developers will need to possess knowledge of

programming to utilize CueCode effectively.

3.6 Competition Matrix

Feature CueCode OpenAI
Functions

Google
Natural

Language API
Spacy.io LangChain GenKit Phone AI

Alexa, Siri,...

Entity recognition ✔ ✔ ✔ ✔ ✔

Plug and Play ✔ ✔ ✔ ✔

LLM suggests
action

✔ ✔ ✔ ✔

Retrieval
Augmented
Generation

✔ ✔ ✔ ✔

Requires no LLM
Expertise

✔ ✔ ✔ ✔ ✔

Natural language
to perform action

✔

✔- Full Implementation
✔ - Partial Implementation

4 Development Tools

Version Control:

○ Git with GitHub
The industry standard for version control is GitHub With Git. Using branching, pull requests, and issue
tracking, it promotes easy collaboration and guarantees that teams function well even on challenging
projects. With GitHub's built-in capabilities, we can keep an eye on changes, work together with other team
members, and protect our codebase with top-notch security measures.

Integrated Development Environment (IDE):

○ VS Code
VS Code is a top option for development across many languages and frameworks because of its wide
ecosystem of extensions and high esteem for flexibility. Its Git connection and real-time collaboration tool
make coding and team coordination easier and guarantee that our project stays structured and productive.

Continuous Integration (CI) & Continuous Deployment (CD):

○ GitHub Actions and Workflows
We manage our CI/CD pipelines with GitHub Actions, integrating deployment and testing into an easier
process. Given the flexibility that GitHub Workflows offer in automating processes across the development
lifecycle, we can confidently deploy, minimize manual intervention, and maintain code quality.

5 Major Functional Components

● Client libraries for customers to use for integrating with CueCode’s service
○ Bindings for the CueCode runtime API

● Python modular monolith:
○ All modules exposed via Flask, a Python Web framework

○ Module: Web API Call Generation- receives natural language input and generates Web API calls from it.

○ Module: Developer Portal - account registration/management, API spec upload, configuration, generation audit

and monitoring

○ Horizontally scalable via 12-factor app methodology

● PostgreSQL persistence:
○ PgVector extension for storing vectors generated by the LLM

○ Normal PostgreSQL tables for customer accounts, configuration, generation monitoring and audit information

● Ollama:
○ A Web service and set of standardized LLM-call APIs that standardizes running various LLMs in one service

● Third-party identity service:
○ For developer portal

○ TBD on how/whether CueCode runtime API traffic would use the same identity provider for authentication.

5.1 Major Functional Components Diagram - Configuration

5.1 Major Functional Components Diagram - Runtime - Customer Application

5.1 Major Functional Components Diagram - Runtime - CueCode

5.1 Major Functional Components Diagram - Overview

6 Risks - Customer, Operational, Regulatory

Very likely (5) T3

Likely (4) T4

Possible (3) T7 T5 T1 O1

Unlikely (2)
R2’ R1, R2,

T6 T2

Rare (1) O2’ O2 O1’

(1)
Insignifican

t

(2)
 Minor

(3)
Moderate

(4)
Significant

(5)
Catastrophi

c

O1 - Unable to procure GPU Hardware for
development.

● Mitigation approach: Control
● Mitigation:

○ Ask for GPU time from the CS
department

○ Personal contacts and networking

O2 - CueCode customers may overlook critical
security or operational risks when generating
API calls.

● Mitigation approach: Continue
Monitoring

● Mitigation: Perform thorough logging,
audits to provide detailed error checking
tools for developers.

P
ro

b
ab

ili
ty

Consequences

6 Risks - Customer, Operational, Regulatory

R1 - The use of API specifications might infringe
on proprietary or closed API usage policies,
leading to legal issues.

● Mitigation approach: Avoid
● Mitigation: Check downstream API usage

against known limits, check with
professionals about API licenses, develop
and publish a platform abuse notice
process for API providers to use, and stay
away from violating proprietary API
standards and procedures.

Very likely (5) T3

Likely (4) T4

Possible (3) T7 T5 T1

Unlikely (2)
R2’ R1, R2,

T6 T2

Rare (1) O2’, R1’ O1’

(1)
Insignifican

t

(2)
 Minor

(3)
Moderate

(4)
Significant

(5)
Catastrophi

c

P
ro

b
ab

ili
ty

Consequences

6 Risks - Customer, Operational, Regulatory

R2 - Storage of API credentials makes CueCode
an enticing target for cybersecurity attacks.

● Mitigation approach: Control
● Mitigation:

○ Legal - apply terms of use that
protect CueCode in the case of
data breach.

○ Technical - separate tenant
credentials with care.

○ Technical - guide developers to use
scoped API keys; use OAuth2 for
user-specific data

Very likely (5) T3

Likely (4) T4

Possible (3) T7 T5 T1

Unlikely (2) R2’ R2, T6 T2

Rare (1) O2’, R1’ O1’

(1)
Insignifican

t

(2)
 Minor

(3)
Moderate

(4)
Significant

(5)
Catastrophi

c
P

ro
b

ab
ili

ty

Consequences

6 Risks - Technical

T1 - LLM won't generate API calls without
few-shot prompt examples.

● Mitigation approach: Control
● Mitigation: Require that developers

include a few examples in their OpenAPI
specs.

T2 - LLM won't generate API calls without
hundreds or thousands of examples.

● Mitigation approach: Continue
Monitoring.

● Mitigation: Pivot to change value
propositions and require backend
development from the customer to
publish API request bodies to CueCode
for its consumption and storage.

Very likely (5) T3

Likely (4) T4

Possible (3) T7 T5 T1

Unlikely (2) R2’, T1’,
T2’ T6 T2

Rare (1) O2’, R1’ O1’

(1)
Insignifican

t

(2)
 Minor

(3)
Moderate

(4)
Significant

(5)
Catastrophi

c

P
ro

b
ab

ili
ty

Consequences

6 Risks - Technical

T3 - Vastness of frontend API client ecosystem
precludes building CueCode client libraries for
all popular languages and frameworks.

● Mitigation approach: Transfer
● Mitigation:

○ Use Swagger CodeGen for our
own CueCode backend API.

○ Open-source our client library
code.

T4 - Potential exposure of sensitive API
information through generated API calls.

● Mitigation approach: Control
● Mitigation: Partition customer data; Give

customers the ability to partition their
customers' data in CueCode's data
storage; use strong encryption when
transferring data; and enforce stringent
access limits.

Very likely (5) T3

Likely (4) T4

Possible (3) T7, T3’ T5

Unlikely (2) R2’, T1’,
T2’ T6

Rare (1) O2’, R1’ T4’ O1’

(1)
Insignifican

t

(2)
 Minor

(3)
Moderate

(4)
Significant

(5)
Catastrophi

c

P
ro

b
ab

ili
ty

Consequences

6 Risks - Technical

T5 - Obsolescence of vendor libraries and
services in the greenfield AI market.

● Mitigation approach: Avoid
● Mitigation:

○ Use OLLama backend
communication with the LLM,
allowing swappable LLM models
according to CueCode’s needs.

○ Use PgVector, an extension to the
FOSS PostgreSQL RDBMS, for
vector storage.

○ Develop a simple Python backend
without undue reliance popular AI
libraries, most of which are pre-v1
and, incidentally, overfit for
CueCode’s purpose.

Very likely (5)

Likely (4)

Possible (3) T7, T3’ T5

Unlikely (2) R2’, T1’,
T2’ T6 T2

Rare (1) O2’, R1’ T4’, T5’ O1’

(1)
Insignifican

t

(2)
 Minor

(3)
Moderate

(4)
Significant

(5)
Catastrophi

c

P
ro

b
ab

ili
ty

Consequences

6 Risks - Technical

T6 - The performance of an API model declines
with complexity.

● Mitigation approach: Continue
Monitoring

● Mitigation: Defer development of
frontend libraries until we know whether
backend processing takes so long as to
require asynchronous processing, instead
of request-response.

Very likely (5)

Likely (4)

Possible (3) T7, T3’ T6

Unlikely (2) R2’, T1’,
T2’ T6’ T2

Rare (1) O2’, R1’ T4’, T5’ O1’

(1)
Insignifican

t

(2)
 Minor

(3)
Moderate

(4)
Significant

(5)
Catastrophi

c

P
ro

b
ab

ili
ty

Consequences

6 Risks - Technical

T7 - Elevated demand may surpass the capacity
of the system, resulting in disruptions or delays.

● Mitigation approach: Continue
Monitoring

● Mitigation: As traffic increases,
scalability and efficiency are ensured
through:

○ Starting development with
architecture that allows scaling
(containerized 12-factor app)

○ Regular performance testing
○ Load balancing.

Very likely (5)

Likely (4)

Possible (3) T7, T3’

Unlikely (2) R2’, T1’,
T2’ T6’ T2

Rare (1) O2’, R1’,
T7’ T4’, T5’ O1’

(1)
Insignifican

t

(2)
 Minor

(3)
Moderate

(4)
Significant

(5)
Catastrophi

c

P
ro

b
ab

ili
ty

Consequences

6 Risks - Mitigation landscape

(5)

(4)

(3) T3’

(2) R2’, T1’,
T2’ T6’

(1) O2’,
R1’, T7’ T4’, T5’ O1’

(1) (2) (3) (4) (5)

P
ro

b
ab

ili
ty

Consequences

(5) T3

(4) T4

(3) T7 T5 T1 O1

(2) R1,
R2, T5,

T6
T2

(1) O2

(1) (2) (3) (4) (5)

P
ro

b
ab

ili
ty

Consequences

P
ro

b
ab

ili
ty

Before After

7 References

[1]
“Against LLM maximalism · Explosion.” Accessed: Sep. 10, 2024. [Online]. Available:
https://explosion.ai/blog/explosion.ai

[2]
E. at Zafin, “Bridging the Gap: Exploring use of Natural Language to interact with Complex Systems,”
Engineering at Zafin. Accessed: Sep. 10, 2024. [Online]. Available:
https://medium.com/engineering-zafin/bridging-the-gap-exploring-using-natural-language-to-interact-wit
h-complex-systems-11c1b056cc19

[3]
Y. Su, A. H. Awadallah, M. Khabsa, P. Pantel, M. Gamon, and M. Encarnacion, “Building Natural
Language Interfaces to Web APIs,” in Proceedings of the 2017 ACM on Conference on Information
and Knowledge Management, Singapore Singapore: ACM, Nov. 2017, pp. 177–186. doi:
10.1145/3132847.3133009.

[4]
“Firebase Genkit.” Accessed: Sep. 14, 2024. [Online]. Available:
https://firebase.google.com/docs/genkit

https://explosion.ai/blog/explosion.ai
https://explosion.ai/blog/explosion.ai
https://medium.com/engineering-zafin/bridging-the-gap-exploring-using-natural-language-to-interact-with-complex-systems-11c1b056cc19
https://medium.com/engineering-zafin/bridging-the-gap-exploring-using-natural-language-to-interact-with-complex-systems-11c1b056cc19
https://medium.com/engineering-zafin/bridging-the-gap-exploring-using-natural-language-to-interact-with-complex-systems-11c1b056cc19
https://doi.org/10.1145/3132847.3133009
https://doi.org/10.1145/3132847.3133009
https://firebase.google.com/docs/genkit
https://firebase.google.com/docs/genkit

7 References

[5]
“Function Calling.” Accessed: Sep. 14, 2024. [Online]. Available:
https://platform.openai.com/docs/guides/function-calling

[6]
guidance-ai/guidance. (Sep. 25, 2024). Jupyter Notebook. guidance-ai. Accessed: Sep. 25,
2024. [Online]. Available: https://github.com/guidance-ai/guidance

[7]
“OpenAPI Specification - Version 3.1.0 | Swagger.” Accessed: Sep. 10, 2024. [Online].
Available: https://swagger.io/specification/

[8]
OpenAPITools/openapi-generator. (Sep. 10, 2024). Java. OpenAPI Tools. Accessed: Sep. 10,
2024. [Online]. Available: https://github.com/OpenAPITools/openapi-generator

https://platform.openai.com/docs/guides/function-calling
https://platform.openai.com/docs/guides/function-calling
https://github.com/guidance-ai/guidance
https://swagger.io/specification/
https://github.com/OpenAPITools/openapi-generator

7 References

[9]
“Tool/function calling | LangChain.” Accessed: Sep. 14, 2024. [Online]. Available:
https://python.langchain.com/v0.1/docs/modules/model_io/chat/function_calling/

[10]
“What Is NLP (Natural Language Processing)? | IBM.” Accessed: Sep. 10, 2024. [Online].
Available: https://www.ibm.com/topics/natural-language-processing

[11]
“Cloud Natural Language,” Google Cloud. Accessed: Sep. 26, 2024. [Online]. Available:
https://cloud.google.com/natural-language

https://python.langchain.com/v0.1/docs/modules/model_io/chat/function_calling/
https://python.langchain.com/v0.1/docs/modules/model_io/chat/function_calling/
https://www.ibm.com/topics/natural-language-processing
https://cloud.google.com/natural-language
https://cloud.google.com/natural-language

7 References

[12]

“Projects · spaCy Usage Documentation,” Projects, 2016. https://spacy.io/usage/projects
(accessed Oct. 03, 2024).

[13]
“Firebase Genkit,” Firebase. https://firebase.google.com/docs/genkit
 [14]
“Github Docs,” Github, Inc. https://docs.github.com/en/get-started/using-git/about-git
 [15]
“VS code for educators and students,” Visual Studio Code.
https://code.visualstudio.com/docs/getstarted/educators-and-students

https://docs.github.com/en/get-started/using-git/about-git
https://code.visualstudio.com/docs/getstarted/educators-and-students

7 References

8 Appendix

8.1 Real World Product vs Prototype Table

Not in scope for Feasibility iteration 3.

That said, we will implement CueCode for OpenAPI specs but not GraphQL specs.

