CueCode

Team Red CS410W project

Elevator Pitch

CueCode lets a Web application generate API calls from natural language with minutes of development
time. “I booked an appointment for Patricia Davis for Thursday at 2pm” can become an API call to your
appointment booking backend with little additional programming effort.

A good API specification and a few key questions are all the model needs to start generating API
requests.

This allows rapid development of natural language processing features typical of those created during
the Generative Al boom, without having to take humans or business rules out of the loop. CueCode can
add Al features to your app without any backend code changes or specialized NLP or large language
model (LLM) skills.

CueCode is easy to integrate with existing services, making a better experience for users and
developers alike.

Table of Contents

Team Bios

Table of Contents

Elevator Pitch

The Societal Problem

Solution

Development Tools

Major Functional Components
References

Appendix

Team Bios

John Hicks

John Hicks is a part-time Computer Science major at ODU, a transfer student from Tidewater Community
College (TCC) where he earned his Associate of Science with a specialization in Computer Science. John has
been employed full-time in software development and IT roles during most of his time in school. John began his

journey into software development when his parents' small business needed a website upgrade from Microsoft

Front Page to WordPress. On understanding WordPress'’s hook and filter mechanisms, John's imagination was kindled in
wondering what other ways of writing software there might be. That curiosity turned to flame and was formed into skill with the
help of many friends, family, Internet contributors, workplace mentors, and school faculty.

Freddie Boateng

Fred Boateng is Computer Science major with
a minor in Cybersecurity. He is from Northern
Virginia and currently working as a
Cybersecurity Engineer with Zachary Piper
Solutions. He strives to always improve and
stay updated to the world of technology, enabling him to
reach his goals.

t

Kobe Franssen

Full time Computer Science major at ODU
while also working part time at the ODU
Computer Science Consultant Group as a
System Administrator. Experienced in Java,
Python, C++ and API handling such as with Discord Bots.
Love to work on cars and i have 3 cats.

Diya Patel

Diya Patel is a junior at ODU, pursuing a ¢ 1"
Bachelor's degree in Computer Science. She : E
is interested in learning about the newest L W 2
advancements in web development and !
artificial intelligence. She has an ongoing
desire to take on new tasks and expand her
skill set.

Team Bios

Sean Baker

Sean’s journey into computer science has
been unconventional and spans both time
and institutions. A transfer student from

Andrew Bausas

| am a computer science major from Virginia
Beach. | aim to improve my skills and
eventually use them to make games.

Piedmont Virginia Community College
(PVCC), Sean earned his associate degree in computer
science in 2016, but his tech journey began much earlier. At

14, he built his first WordPress site to supplement his
allowance, which led to articles like "ten reasons this iphone
will suceed’, Since then,

Rather than pursuing a conventional corporate path, Sean Chase Wallace

has prioritized creativity and innovation, which has led himto =~ Chase Wallace is a Computer Science and

work on projects that push technological boundaries, Biomedical Sciences double major from

including contributing to self-driving car technology with Norfolk with a strong interest in neuroscience ’

Edison2 and developing die cast automation software for
VisiTrak Worldwide and Rockwell Automation. His self-
taught, autodidactic learning approach has defined his
career. Set to graduate this spring, Sean hopes to pursue a
masters degree.

and artificial intelligence. He is always ready
to learn new skills and broaden his horizons
with challenging new projects.

The Societal Problem

e Userinterfaces don’t speak the user’s language, but users rely on apps to make things
happen.

e Things happenin Web apps through Web APIs.
Developers are motivated to add Natural Language Processing (NLP) features to their
apps, but doing so is painstaking.

e We need away to turn natural language into Web Application Programming Interface
(API) calls.

o Forexample, if aclient service representative were to provide input to an application in
natural language, “I called Patricia Davis and rescheduled her appointment from August
1st to August 16th.”, a Web API call like the following would be generated:

o POST https://the-appointment-app.com/api/vl/appointments/

o {"request":{"reschedule":{"last": "Davis", "first":"Patricia"”, "from":{"month":8,
"day":1,"year":2024}, "to":{"month":8, "day":1,"year":2024}}}}

2.1 Problem Statement

No framework exists for making Natural Language to API-call generation simple for fullstack
and Web developers.

Existing approaches:

e Microsoft created a paper describing their approach to using natural language to operate
on the Microsoft Graph API [CITE MS]. But that is just for the Graph API.

e Zafinclaims to have built a system that does uniquely well at identifying which API
endpoint to call due to an embedding strategy for API calls [CITE Zafin]. The solution
focused on chatbot integration more than data entry.

e LLM Function Calling is promising, but it requires LLM prompt engineering and backend
programming to turn natural language to API calls, vs. the normal chatbot use-case.

=> Demand for API-call generation, but no simple, operationalized, and risk-aware tooling for it.

2.2 Problem Characteristics - use of API specs

e Tosolve the above problems, we must commoditize the process of turning natural language
into API calls against a large number of existing existing Web APIs.
o (Reach for the pre-made tool.)
e Since APIs are commonly described with specifications, why not use those?
o (Keep a clean contract between system components.)
e OpenAPlisthe leading industry standard way to describe REST (REpresentational State
Transfer) APls.
e However, there are no complete frameworks that leverage OpenAPI specifications when
turning natural language to REST API calls.

2.2 Problem Characteristics - NLP/LLM challenges

Problems with current NLP/LLM processing for creating API calls:

e Require awareness of prompt engineering and other more complex Al techniques
o =>Time/money upskilling fullstack and Web developers.

e The NLP tools for generating API calls today are stand-alone programs and libraries that
don't present a unified, opinionated solution.

o => Developers are left building one-off solutions.
o => Heavy boilerplate/in-house frameworks.

e Humans and application logic are kept out of the loop in approaches that perform every LLM
Function Call that the LLM requests; this is high-risk.

2.2 Problem Characteristics - NLP/LLM challenges

Problems with current NLP/LLM processing for creating API calls:

e Limiting Responses to fit an APl Structure Is Difficult
e Lack of Understanding of Entity Relationships
e Absence of a Consistent Framework for Web Developers

2.3 Current Process Flow

A solution for generating API calls would ideally address all of these points.

° Design the interface between the customer’s application and the API call generation code.
Encode the Web API structure for validation and generation. Options:
o In Langchain, build Python classes in [9]
o OpenAl, use schema specification [CITE] and hope for the best.
Tag entities and their relationships in the natural language input.
For JSON, prompt the LLM to use a certain JSON format. Verify output is in JSON format
(LangChain [9], Guidance Al [6])
° Tell the LLM about the API structure:
o One-shot prompt is common in examples, but LLMs struggle to consistently generate responses that are
conformant to the spec [CITE].
Once an API call is generated, confirm its structure (JSON or otherwise) conforms to the spec.
Confirm that the sequence of data manipulations is consistent with the new/modified entities’
relationships.
° Make the existing application aware of LLM API call suggestions:
o For interactive apps, show the suggestions to the user.
o For batch processing, push the generated API calls through business logic.

No single application or framework on the market addresses all of these concerns..

Natural language: "
went 10.., talked 10

User

3 Solution

CueCode will provide a comprehensive service for creating Web API calls from natural language input in
arisk-aware, accurate manner that puts developers - and, by extension, users - in control of when API
calls are invoked.

3.1 Solution Statement

What that means:

Developers will be able to use existing API specifications, which is CueCode makes understandable by LLMs, to
generate the content of their API calls in conformance with their API spec.

So, our client service representative can provide input to a booking application using CueCode in natural
language, “I called Patricia Davis and rescheduled her appointment from August 1st to August 16th.” The
application can then use CueCode’s libraries, which have been configured using documentation about the
structure of their data, to generate the following JSON:

POST https://the-appointment-app.com/api/vl/appointments/

{"request":{"reschedule":{"last": "Davis", "first":"Patricia", "from":{"month":8, "day":1,"year":2024},
"to":{"month":8, "day":1,"year":2024}}}}

Which would then be used by the booking application to perform the API call, which will change the appointment
date in their database, or prompt the user for additional information.

3.2 Solution Characteristics

Problem Characteristics

Forcing end users to fill out lots of forms for
input is both limiting and tedious

There is no easy way to implement using NLP
to parse user input for existing applications

It is difficult to make LLMs aware of the
structure of data expected from a natural
language prompt

There is no standardized solution for
translating natural language into structured
data

Translating natural language into structured
data requires prompt engineering and other
skill sets that do not belong to a typical front
end or full stack developer

LLM integration can cause data mutation and
incorrect parsing of information

B EEEE——

/

Solution Characteristics

CueCode leverages LLM technology to
parse natural language into structured
data to generate API calls, simplifying the
process of data entry.

CueCode provides libraries to front end
and full stack developers to easily integrate
NLP into their existing applications

Existing API specifications provide
machine-readable input to guide LLMs into
parsing user input from natural language,
saving developers time and resources

CueCode facilitates Human-in-the-Loop
feedback to allow the end user to review
the generated data in the existing user
interface

3.3 Solution Process Flow (configuration)

Understand _
API API Get vector encoding Store in CueCode
specification structure/ of AP structure info for use at runtime
behavior

At configuration time:

Vector
store

Developers ensure their APl specification is accurate.

Developer uploads their API specification to CueCode.

Developer answer a few configuration questions.

CueCode stores the structure and requirements for the APl to aid the LLM in generating
responses at runtime.

e Allof thisis transparent to the Developer’s customers/end-users.

3.3 Solution Process Flow (runtime)

Your app CueCode
"y'-.‘ . . (‘)‘\ -
Use CueCode in the developer’s app: Natural language: "l Detect
5 CueCode
went to... talked to.... i entities,
ol API cal actions, N
e Pass natural language text to V libraries relationships
CueCode libraries.
e Letthe CueCode service figure Context about
out the structured data N o DE e e
contained in the text User Lnd
) : validation and Store
e Use CueCode’s extracted edis |
structured data within the User A2l
existing application’s data model.
e.g.

5 Show suggestions to the user Perform call to your API as usual

o Perform API calls in a batch job
o Validate through business rules
o Whatever the use case requires

3.4 What it Will Do

Will implement NLP capabilities to enable and understand natural language

Will offer a user friendly interface (API) that developers can use

Will provide a developer portal web application, where developers can upload API specifications

Will enable quick iteration and prototyping by allowing developers to test and refine how their
applications respond to the natural language inputs.

Will provide tools for customizing NLP models to fit specific domains/industries ensuring better
performance for unique use cases.

Will include documentation and support resources to help developers implement and troubleshoot
various systems effectively.

Will reduce the time and financial investment typically required for implementing NLP, making it
affordable for smaller teams and startups

Will use API specifications, enabling context-aware replies that complement the distinct functionality and
data structure of each application.

Will allow for real time analysis and response generation, enhancing user experience through immediate
feedback and interactions.

3.5 What it Will Not Do

e Will not replace human judgment when interpreting language in terms of making
subjective decisions beyond its programming.

e Willnot act as an Al agent

e Will not be perfect, misinterpretations could occur with certain slang, ambiguous
phrasing or idioms.

e Will not be able to handle complex conversations.
Will struggle with dialogues, conversations that require deeper understanding.

e Will not provide user-facing applications; developers will need to build their own
solutions and install any necessary software/applications they need.

e Will not automatically make API calls on users' behalf; requests must first have human
permission before being fulfilled.

e Will not have programming tutorials, developers will need to possess knowledge of
programming to utilize CueCode effectively.

v - Full Implementation

36 COm petitiOn M atriX v - Partial Implementation

4 Development Tools

Version Control:

o Git with GitHub
The industry standard for version control is GitHub With Git. Using branching, pull requests, and issue
tracking, it promotes easy collaboration and guarantees that teams function well even on challenging
projects. With GitHub's built-in capabilities, we can keep an eye on changes, work together with other team
members, and protect our codebase with top-notch security measures.

Integrated Development Environment (IDE):

o VS Code
VS Code is a top option for development across many languages and frameworks because of its wide
ecosystem of extensions and high esteem for flexibility. lts Git connection and real-time collaboration tool
make coding and team coordination easier and guarantee that our project stays structured and productive.

Continuous Integration (Cl) & Continuous Deployment (CD):

o GitHub Actions and Workflows
We manage our CI/CD pipelines with GitHub Actions, integrating deployment and testing into an easier
process. Given the flexibility that GitHub Workflows offer in automating processes across the development
lifecycle, we can confidently deploy, minimize manual intervention, and maintain code quality.

5 Major Functional Components

e Clientlibraries for customers to use for integrating with CueCode’s service
o Bindings for the CueCode runtime API
e Python modular monolith:
o All modules exposed via Flask, a Python Web framework
o Module: Web API Call Generation- receives natural language input and generates Web API calls from it.
o Module: Developer Portal - account registration/management, APl spec upload, configuration, generation audit
and monitoring
o Horizontally scalable via 12-factor app methodology
e PostgreSQL persistence:
o PgVector extension for storing vectors generated by the LLM
o Normal PostgreSQL tables for customer accounts, configuration, generation monitoring and audit information
e Ollama:
o A Webservice and set of standardized LLM-call APIs that standardizes running various LLMs in one service
e Third-party identity service:
o Fordeveloper portal
o TBD on how/whether CueCode runtime API traffic would use the same identity provider for authentication.

5.1 Major Functional Components Diagram - Configuration

Customer interaction Infrastructure/load balancer Application layer Supporting services Persistence layer

A N A) AN N A

; ‘PostgreSQL with PgVector
OpenlD Connect: installed

1. Acct setup : 3
2. Acct authenticatio

EPython Application

Third-party identity

HTTP requests provider
JWT headers Python API calls
HTML template Dlvele(\)/glucl)gér Database tables
rendering for Ul with
,| Reverse SR : Portal with calls customer account
1. Signs up | proxy framework to shared LLM 5 Reads/writes via SOL E info, project config
. Reads/writes via :) ,
. Uploads API specs utilities : Q g etc.,
Customer - Reads/writes via SQL
Developer after getting vectors from
the LLM
Over HTTP, Developer Portal_
requests of the LLM vectorizing
content/API specs for storage
into PostgreSQL
. Ollama :)
14 Tables with

vector data types

LLM model

51 Major Functional Components Diagram - Runtime - Customer Application

Natural language input

A

Customer's NLP-to-API code

N

CueCode and target Web API

N

Use case 1:

Enters/speaks directly to

customer application's Ul

ECustomer Application

_| Collect Natural Library API cal

Customer's end user

Use case 2:

D

Customer's
textual

language data

Text is ingested by
customer application

| Language input

Sent: Natural

language text

Received: suggester

Web API calls B ciccode

Customer
application
logic

CueCode
client library

A

Suggested API éalls

ibusines rule evaluation
or user choicg presented....

Decide \ Decision:

whether to
make API ca

Customer API
call logic

returned from client Iibrary call

éPerforrr API call
suggested

Web API with spec pre

defined in CueCode

py CueCode

51 Major Functional Components Diagram - Runtime - CueCode

Customer's Application Infrastructure/load balancer Application layer Supporting services Persistence layer
~ N N N N N . N N A N

i PosigreSQL wih Pgvector

éPython Application installed
1. JWT authentication HTTP requests
2. Sent: Natural JWT headers
language text Database tables
Received: suggested

9 Pvthon Web| Python API calls Module - with
Web API Ca||S Reverse yt N Web API Ca”
roxy framework eneration : : s .Cust0m§r aCCOUnt
P g i Reads/writes via SQL : info, project config,
: : etc.,
Reads vectors/cosine
similarity via SQL
: Over HTTP, API call gen mo
/-S;)upsl‘itgamtiza HTTPS: fetch when real datg requests to Ollama:
is needed for context, " : 1. Prompt and response
either by the LLMGr 2. Entity tagging
by CueCode algorithms 3. Identification of tools to call
for more data
Tables with

Web API with
spec and
config pre-defined
for CueCode

vector data types

LLM model

5.1 Major Functional Components Diagram - Overview

Customer Infrastructure/load balancer Application layer

N N AN

Supporting services Persistence layer

AN N

EPython Application

Module -
Developer
Portal with calls
to shared LLM
utilities

Python Web
framework

Customer -

Developer
CueCode
client library

A

Reverse
proxy

Module -
Web API call
generation

Customer

Application

Web API with
spec and
config pre-defined
for CueCode

...

iPostgreSQL with PgVector
installed

Third-party identity
provider

Database tables
with
customer account
info, project config,
etc.,

Tables with
vector data types

LLM model

O1 - Unable to procure GPU Hardware for

development.
e Mitigation approach: Control

e Mitigation:
o Askfor GPU time from the CS
department

o Personal contacts and networking

02 - CueCode customers may overlook critical
security or operational risks when generating
API calls.
e Mitigation approach: Continue
Monitoring
e Mitigation: Perform thorough logging,
audits to provide detailed error checking
tools for developers.

Probability

6 Risks - Customer, Operational, Regulatory

Very likely (5) T3
Likely (4) T4
Possible (3) T7 T5 T1 o1
//
Unlikely (2) , R1, R2,
R2 T6 T2 (
Rare (1) 02’ ‘_ 02 or
(1) (2) (©) (4) (5)
Insignifican Minor Moderate | Significant | Catastrophi
! Consequences ¢

R1 - The use of API specifications might infringe
on proprietary or closed APl usage policies,
leading to legal issues.

Mitigation approach: Avoid

Mitigation: Check downstream APl usage
against known limits, check with
professionals about API licenses, develop
and publish a platform abuse notice
process for API providers to use, and stay
away from violating proprietary API
standards and procedures.

Probability

6 Risks - Customer, Operational, Regulatory

Very likely (5) T3
Likely (4) T4
Possible (3) T7 T5 T1
Unlikely (2) , R1, R2,
R2 ' T6 T2
Rare (1) 02, R1’ o1
(1) (2) (©) (4) (5)
Insignifican Minor Moderate | Significant | Catastrophi
t Consequences ¢

6 Risks - Customer, Operational, Regulatory

R2 - Storage of API credentials makes CueCode Hony el () T3
an enticing target for cybersecurity attacks.
e Mitigation approach: Control Likely (4) T4
e Mitigation: 2
o Legal - apply terms of use that i Possible (3) T7 T5 T1
protect CueCode in the case of =
data breach. & | Unliely (2) R2 g4 R2,76 T2
o Technical - separate tenant
credentials with care. Rare (1) 02, R1’ o1’
o Technical - guide developers to use
scoped API keys; use OAuth2 for (1) 2) (3) (4) (5)
user-specific data Insignifican Minor Moderate | Significant | Catastrophi
t (o

Consequences

6 Risks - Technical

T1-LLM won't generate API calls without Hony el () T3
few-shot prompt examples.
e Mitigation approach: Control Likely (4) T4
e Mitigation: Require that developers :f
include a few examples in their OpenAPI & Possible (3) T7 T5 /T1
specs. I /
T2-LLM won't generate API calls without a Unlikely (2) R2’, T1’, Ta T2
hundreds or thousands of examples. T2’
e Mitigation approach: Continue
Monitoring. Rare (1) 02, RT or
e Mitigation: Pivot to change value
propositions and require backend (1) (2) €) (4))
development from the customer to Insignifican Minor Moderate | Significant | Catastrophi
publish API request bodies to CueCode t Conseduences c

for its consumption and storage.

T3 - Vastness of frontend API client ecosystem
precludes building CueCode client libraries for
all popular languages and frameworks.

e Mitigation approach: Transfer

e Mitigation:
o Use Swagger CodeGen for our
own CueCode backend API.
o Open-source our client library
code.

T4 - Potential exposure of sensitive API
information through generated API calls.
e Mitigation approach: Control
e Mitigation: Partition customer data; Give
customers the ability to partition their
customers' datain CueCode's data
storage; use strong encryption when
transferring data; and enforce stringent
access limits.

Probability

6 Risks - Technical

Very likely (5) 7”7 T3
P
Likely (4) /ﬂ
A
Possible (3) T7, T3’ TF
Unlikely (2) R2’, T1’,
T2
Rare (1) 02, R1’ T4 o1
(1) (2) (©) (4) (5)
Insignifican Minor Moderate | Significant | Catastrophi
! Consequences ¢

6 Risks - Technical

T5 - Obsolescence of vendor libraries and
services in the greenfield Al market.

e Mitigation approach: Avoid

e Mitigation:

O

Use OLLama backend
communication with the LLM,
allowing swappable LLM models
according to CueCode’s needs.
Use PgVector, an extension to the
FOSS PostgreSQL RDBMS, for
vector storage.

Develop a simple Python backend
without undue reliance popular Al
libraries, most of which are pre-v1
and, incidentally, overfit for
CueCode’s purpose.

Probability

Very likely (5)
Likely (4)
Possible (3) T7, T3 T5
Unlikely (2) R2, T1,
T2 * Uz
Rare (1) 02, R1 | T4, 15 o1’
(1) (2)) (4) ()
Insignifican Minor Moderate | Significant | Catastrophi
t Consequences ¢

Té6 - The performance of an API model declines
with complexity.
e Mitigation approach: Continue
Monitoring
e Mitigation: Defer development of
frontend libraries until we know whether
backend processing takes so long as to
require asynchronous processing, instead
of request-response.

Probability

6 Risks - Technical

Very likely (5)
Likely (4)
Possible (3) T7, T3 *TG
Unlikely (2) R2-’|:2'|"1 ' 16’ T2
Rare (1) 02, R1T | T4, T5 o7
(1) (2) 3) (4) ®)
Insignifican Minor Moderate | Significant | Catastrophi
c

t

Consequences

T7 - Elevated demand may surpass the capacity

of the system, resulting in disruptions or delays.

e Mitigation approach: Continue
Monitoring

e Mitigation: As traffic increases,
scalability and efficiency are ensured
through:

o Starting development with
architecture that allows scaling
(containerized 12-factor app)

o Regular performance testing

o Load balancing.

Probability

6 Risks - Technical

Very likely (5)
Likely (4)
Possible (3) T7, T3
Unlikely (2) 2’ T1, ,
To' T6 T2
Rare (1) 2, R1’, , , ,
T T4, T5 O1
(1) (2)) (4))
Insignifican Minor Moderate | Significant | Catastrophi
t Consequences ¢

6 Risks - Mitigation landscape

Before After

(5) T3 (5)
(4) T4 (4)
> Fy
-k 7 T5 T1 01 5| © T3
S 3
sl @ R1, 2l @ RZ,TT, |
= R2, T5, T2 T2
T6
(1) 02, R :
(1) 02 Ri 17 | T4 T8 01
(1) (2) () (4) (5)
(1) Cgl)wsequené:e;g) ()
Consequences

7 References

[1]
“Against LLM maximalism - Explosion.” Accessed: Sep. 10, 2024. [Online]. Available:
https://explosion.ai/blog/explosion.ai

[2]
E. at Zafin, “Bridging the Gap: Exploring use of Natural Language to interact with Complex Systems,”
Engineering at Zafin. Accessed: Sep. 10, 2024. [Online]. Available:
https://medium.com/engineering-zafin/bridging-the-gap-exploring-using-natural-language-to-interact-wit
h-complex-systems-11c1b056¢cc19

[3]
Y. Su, A. H. Awadallah, M. Khabsa, P. Pantel, M. Gamon, and M. Encarnacion, “Building Natural
Language Interfaces to Web APIs,” in Proceedings of the 2017 ACM on Conference on Information
and Knowledge Management, Singapore Singapore: ACM, Nov. 2017, pp. 177-186. doi:
10.1145/3132847.3133009.

[4]
“Firebase Genkit.” Accessed: Sep. 14, 2024. [Online]. Available:
https://firebase.google.com/docs/genkit

https://explosion.ai/blog/explosion.ai
https://explosion.ai/blog/explosion.ai
https://medium.com/engineering-zafin/bridging-the-gap-exploring-using-natural-language-to-interact-with-complex-systems-11c1b056cc19
https://medium.com/engineering-zafin/bridging-the-gap-exploring-using-natural-language-to-interact-with-complex-systems-11c1b056cc19
https://medium.com/engineering-zafin/bridging-the-gap-exploring-using-natural-language-to-interact-with-complex-systems-11c1b056cc19
https://doi.org/10.1145/3132847.3133009
https://doi.org/10.1145/3132847.3133009
https://firebase.google.com/docs/genkit
https://firebase.google.com/docs/genkit

7 References

“Function Calling.” Accessed: Sep. 14, 2024. [Online]. Available:
https://platform.openai.com/docs/quides/function-calling

guidance-ai/quidance. (Sep. 25, 2024). Jupyter Notebook. guidance-ai. Accessed: Sep. 25,
2024. [Online]. Available: https://github.com/quidance-ai/guidance

“OpenAPI Specification - Version 3.1.0 | Swagger.” Accessed: Sep. 10, 2024. [Online].
Available: https://swagger.io/specification/

OpenAPITools/openapi-generator. (Sep. 10, 2024). Java. OpenAPI Tools. Accessed: Sep. 10,
2024. [Online]. Available: https://github.com/OpenAPITools/openapi-generator

[3]

[6]

[7]

[8]

https://platform.openai.com/docs/guides/function-calling
https://platform.openai.com/docs/guides/function-calling
https://github.com/guidance-ai/guidance
https://swagger.io/specification/
https://github.com/OpenAPITools/openapi-generator

7 References

[9]
“Tool/function calling | LangChain.” Accessed: Sep. 14, 2024. [Online]. Available:
https://python.langchain.com/v0.1/docs/modules/model io/chat/function calling/

[10]
“What Is NLP (Natural Language Processing)? | IBM.” Accessed: Sep. 10, 2024. [Online].
Available: https://www.ibm.com/topics/natural-language-processing

[11]
“Cloud Natural Language,” Google Cloud. Accessed: Sep. 26, 2024. [Online]. Available:
https://cloud.google.com/natural-language

https://python.langchain.com/v0.1/docs/modules/model_io/chat/function_calling/
https://python.langchain.com/v0.1/docs/modules/model_io/chat/function_calling/
https://www.ibm.com/topics/natural-language-processing
https://cloud.google.com/natural-language
https://cloud.google.com/natural-language

7 References

[12]

“Projects - spaCy Usage Documentation,” Projects, 2016. https://spacy.io/usage/projects
(accessed Oct. 03, 2024).
[13]

“Firebase Genkit,” Firebase. https://firebase.google.com/docs/genkit

[14]
“Github Docs,” Github, Inc. https://docs.github.com/en/get-started/using-git/about-git

[19]
“VS code for educators and students,” Visual Studio Code.

https://code.visualstudio.com/docs/getstarted/educators-and-students

https://docs.github.com/en/get-started/using-git/about-git
https://code.visualstudio.com/docs/getstarted/educators-and-students

\ 7 References

\ 8 Appendix

\ 8.1 Real World Product vs Prototype Table

Not in scope for Feasibility iteration 3.

That said, we will implement CueCode for OpenAPI specs but not GraphQL specs.

