
CueCode

Team Red CS410W project

Elevator Pitch

CueCode lets a Web application generate API calls from natural language with minutes of development

time. “I booked an appointment for Patricia Davis for Thursday at 2pm” can become an API call to your

appointment booking backend with little additional programming effort.

A good API specification and a few key questions are all the model needs to start generating API

requests.

This allows rapid development of natural language processing features typical of those created during

the Generative AI boom, without having to take humans or business rules out of the loop. CueCode can

add AI features to your app without any backend code changes or specialized NLP or large language

model (LLM) skills.

CueCode is made by developers, for developers - as seen in CueCode’s easy-to-use client libraries.

Table of Contents

● Team Bios

● Table of Contents

● Elevator Pitch

● The Societal Problem

● Solution

● Development Tools

● Major Functional Components

● References

● Appendix

Team Bios

Team Bios

The Societal Problem

● User interfaces don’t speak the user’s language
● Turning bulk unstructured data into structured data is difficult
● Humans are kept out of the loop in current AI agent based systems
● To develop human-in-the-loop natural language to API systems, it would take:

○ Specialized skills
○ Extensive backend programming changes
○ One-off development per application
○ A lot of money

● Conventional interfaces are difficult for users, which frequently results in work
abandonment or lost of interest.

● Complex forms and interfaces are difficult for users to navigate, which affects the user
experience.

● The vast majority of NLP tools on the market today are stand-alone programs that don't
work well with current web apps.

● As applications evolve, the functionality of NLP is challenging, leading to failures in
interpreting user input.

2.1 Problem Statement

To solve the above problems, we must commoditize LLM development for existing Web apps.

However, there are no frameworks/tools that leverage OpenAPI or GraphQL specifications, the

two most common ways to describe API capabilities.

2.2 Problem Characteristics

Problems with current NLP/LLM processing for creating API calls:

● Hand decision-making to the LLM
○ Removes human checks
○ Removes business logic

● One-off, defined per application
● Lack a clearly defined concept of entity relationships
● Require awareness of prompt engineering and other more complex AI techniques
● => Heavy development effort

2.2 Problem Characteristics

Who is affected by the problem?

Developers:

Impact: The complex process of merging NLP systems, which requires knowledge of rapid engineering and cutting-edge AI approaches, places a
significant burden on developers. They frequently don't have a well-defined framework for managing business logic or object relationships, forcing
them to create custom solutions for each application.

System Architects:

The absence of standardization in the definition and comprehension of entity connections by LLMs is a challenge for system architects. In the absence
of a framework that guarantees that LLMs identify the links among data items or fields, they are forced to create unique solutions, which are prone to
error and require a lot of work.

End Users (Application Users):

When end users engage with applications that rely on LLMs without human checks or structured data, they may encounter errors, inconsistent results,
or actions that are not intended. These issues are caused by poor implementations of NLP-based features. The absence of human verification processes
raises the risk of data entry or interaction errors, which lowers user satisfaction and trust.

2.3 Current Process Flow

● Encode API structure
○ Build Python classes [9]

● Verify output is in JSON format
○ Tools exist for verifying a JSON format and

even that LLM output matches a JSON
schema. (LangChain [9], Guidance AI [6])

○ (But, this alone does not make an
NLP-to-API-call engine.)

● Tell the LLM about the API structure
○ One-shot prompt is common
○ Could not find examples of encoding API

information in the vector store.
● Tie it all together with backend programming
● Make your application aware of LLM API call

suggestions
● Integrate the new NLP features into the

existing app

3 Solution

We aim to build client libraries for web app developers that interface with CueCode’s servers, which will

deploy LLMs to convert natural language to structured API calls.

3.1 Solution Characteristics
Problem Characteristics

- Forcing end users to fill out lots of forms for
input is both limiting and tedious

- There is no easy way to implement using NLP
to parse user input for existing applications

- It is difficult to make LLMs aware of the
structure of data expected from a natural
language prompt

- There is no standardized solution for
translating natural language into structured
data

- Translating natural language into structured
data requires prompt engineering and other
skill sets that do not belong to a typical front
end or full stack developer

- LLM integration can cause data mutation and
incorrect parsing of information

Solution Characteristics

- CueCode leverages LLM technology to
parse natural language into structured
data to generate API calls, simplifying the
process of data entry.

- CueCode provides libraries to front end
and full stack developers to easily integrate
NLP into their existing applications

- Existing API specifications provide
machine-readable input to guide LLMs into
parsing user input from natural language,
saving developers time and resources

- CueCode uses Human-in-the-Loop
feedback to allow the end user to review
the generated data in the existing user
interface

3.2 Solution Statement

What that means:

Developers will be able to use existing API specifications, which is CueCode makes understandable by
LLMs, to define the structure of their API calls.

For example, if a client service representative were to provide input to an application using CueCode in
natural language, “I called Patricia Davis and rescheduled her appointment from August 1st to August
16th.” The application can then use CueCode’s libraries, which have been configured using
documentation about the structure of their data, to generate the following JSON:

{"request":{"reschedule":{"last": "Davis", "first":"Patricia", "from":{"month":8,
"day":1,"year":2024}, "to":{"month":8, "day":1,"year":2024}}}}

Which would then be converted into the appropriate API call to change the appointment date in their
database, or prompt the user for additional information.

3.3 Solution Process Flow (“training” time)

Training time:

● Upload API specification

● Answer a few questions

● CueCode stores the structure and requirements for your API in a vector store to aid the LLM

in generating responses at runtime

3.3 Solution Process Flow (runtime)

Use CueCode in your app:

● Integrate text processing via

CueCode libraries

● At runtime, let CueCode figure

out the structured data

contained in the text

● Use CueCode’s extracted

structured data. e.g.:
○ Show suggestions to the user

○ Perform API calls in a batch job

○ Validate through business rules

○ Whatever your use case

requires

3.4 What it Will Do

● Will implement NLP capabilities to enable and understand natural language
● Will offer a user friendly interface (API) that developers can use
● Will provide a developer portal web application, where developers can upload API specifications
● Will enable quick iteration and prototyping by allowing developers to test and refine how their

applications respond to the natural language inputs.
● Will provide tools for customizing NLP models to fit specific domains/industries ensuring better

performance for unique use cases.
● Will include documentation and support resources to help developers implement and troubleshoot

various systems effectively.
● Will reduce the time and financial investment typically required for implementing NLP, making it

affordable for smaller teams and startups
● Will use API specifications, enabling context-aware replies that complement the distinct functionality and

data structure of each application.
● Will allow for real time analysis and response generation, enhancing user experience through immediate

feedback and interactions.

3.5 What it Will Not Do

● Will not replace human judgment when interpreting language in terms of making
subjective decisions beyond its programming.

● Will not act as an AI agent
● Will not be perfect, misinterpretations could occur with certain slang, ambiguous

phrasing or idioms.
● Will not be able to handle complex conversations.
● Will struggle with dialogues, conversations that require deeper understanding.
● Will not provide user-facing applications; developers will need to build their own

solutions and install any necessary software/applications they need.
● Will not automatically make API calls on users' behalf; requests must first have human

permission before being fulfilled.
● Will not have programming tutorials, developers will need to possess knowledge of

programming to utilize CueCode effectively.
● Will not ensure data privacy, users must manage and secure their data to the best of their

abilities.

3.6 Competition Matrix

Feature CueCode OpenAI
Functions

Google
Natural

Language API
Spacy.io LangChain GenKit Phone AI

Alexa, Siri,...

Entity recognition ✔ ✔ ✔ ✔ ✔

Plug and Play ✔ ✔ ✔ ✔

LLM suggests
action

✔ ✔ ✔ ✔

Retrieval
Augmented
Generation

✔ ✔ ✔ ✔

Requires no LLM
Expertise

✔ ✔ ✔ ✔ ✔

Natural language
to perform action

✔

✔- Full Implementation
✔ - Partial Implementation

4 Development Tools

Version Control:

○ Git with GitHub
Git will be our version control system, and we'll use GitHub repositories to manage branches,
collaborate with team members, and monitor changes as they happen during the development
process.

Integrated Development Environment (IDE):

○ VS Code
Our main tool for creating and managing code will be Visual Studio Code (VS Code), because of its
flexibility and support for many languages and extensions.

Continuous Integration (CI) & Continuous Deployment (CD):

○ GitHub Actions and Workflows
We will use GitHub Actions and Workflows for automated testing and deployment, ensuring code is
continuously combined, tested, and deployed in an efficient manner.

5 Major Functional Components

● Client libraries for customers to use for integrating with CueCode’s service
● Python modular monolith:

○ All modules exposed via Flask, a Python Web framework
○ Module: Python NLP API - receives natural language input and generates Web API calls from it.
○ Module: Developer Portal - account registration/management, API spec upload, configuration,

generation audit and monitoring
○ Horizontally scalable via 12-factor app methodology

● PostgreSQL persistence:
○ PgVector extension for storing vectors generated by the LLM
○ Normal PostgreSQL tables for customer accounts, configuration, generation monitoring and audit

information

● Ollama:
○ A Web service and set of standardized LLM-call APIs that standardizes running various LLMs in

one service

5.1 Major Functional Components Diagram

CueCode
implementation on
next slide….

5.1 Major Functional Components Diagram

6 Risks - Customer, Operational, Regulatory

Very likely (5) T3

Likely (4) T4

Possible (3) T7 T5 T1 O1

Unlikely (2)
R2’ R1, R2,

T6 T2

Rare (1) O2’ O2 O1’

(1)
Insignifican

t

(2)
 Minor

(3)
Moderate

(4)
Significant

(5)
Catastrophi

c

O1 - Unable to procure GPU Hardware for
development.

● Mitigation approach: Control
● Mitigation:

○ Ask for GPU time from the CS
department

○ Personal contacts and networking

O2 - CueCode customers may overlook critical
security or operational risks when generating
API calls.

● Mitigation approach: Continue
Monitoring

● Mitigation: Perform thorough logging,
audits to provide detailed error checking
tools for developers.

P
ro

b
ab

ili
ty

Consequences

6 Risks - Customer, Operational, Regulatory

R1 - The use of API specifications might infringe
on proprietary or closed API usage policies,
leading to legal issues.

● Mitigation approach: Avoid
● Mitigation: Check downstream API usage

against known limits, check with
professionals about API licenses, develop
and publish a platform abuse notice
process for API providers to use, and stay
away from violating proprietary API
standards and procedures.

Very likely (5) T3

Likely (4) T4

Possible (3) T7 T5 T1

Unlikely (2)
R2’ R1, R2,

T6 T2

Rare (1) O2’, R1’ O1’

(1)
Insignifican

t

(2)
 Minor

(3)
Moderate

(4)
Significant

(5)
Catastrophi

c

P
ro

b
ab

ili
ty

Consequences

6 Risks - Customer, Operational, Regulatory

R2 - Storage of API credentials makes CueCode
an enticing target for cybersecurity attacks.

● Mitigation approach: Control
● Mitigation:

○ Legal - apply terms of use that
protect CueCode in the case of
data breach.

○ Technical - separate tenant
credentials with care.

○ Technical - guide developers to use
scoped API keys; use OAuth2 for
user-specific data

Very likely (5) T3

Likely (4) T4

Possible (3) T7 T5 T1

Unlikely (2) R2’ R2, T6 T2

Rare (1) O2’, R1’ O1’

(1)
Insignifican

t

(2)
 Minor

(3)
Moderate

(4)
Significant

(5)
Catastrophi

c
P

ro
b

ab
ili

ty

Consequences

6 Risks - Technical

T1 - LLM won't generate API calls without
few-shot prompt examples.

● Mitigation approach: Control
● Mitigation: Require that developers

include a few examples in their OpenAPI
specs.

T2 - LLM won't generate API calls without
hundreds or thousands of examples.

● Mitigation approach: Continue
Monitoring.

● Mitigation: Pivot to change value
propositions and require backend
development from the customer to
publish API request bodies to CueCode
for its consumption and storage.

Very likely (5) T3

Likely (4) T4

Possible (3) T7 T5 T1

Unlikely (2) R2’, T1’,
T2’ T6 T2

Rare (1) O2’, R1’ O1’

(1)
Insignifican

t

(2)
 Minor

(3)
Moderate

(4)
Significant

(5)
Catastrophi

c

P
ro

b
ab

ili
ty

Consequences

6 Risks - Technical

T3 - Vastness of frontend API client ecosystem
precludes building CueCode client libraries for
all popular languages and frameworks.

● Mitigation approach: Transfer
● Mitigation:

○ Use Swagger CodeGen for our
own CueCode backend API.

○ Open-source our client library
code.

T4 - Potential exposure of sensitive API
information through generated API calls.

● Mitigation approach: Control
● Mitigation: Partition customer data; Give

customers the ability to partition their
customers' data in CueCode's data
storage; use strong encryption when
transferring data; and enforce stringent
access limits.

Very likely (5) T3

Likely (4) T4

Possible (3) T7, T3’ T5

Unlikely (2) R2’, T1’,
T2’ T6

Rare (1) O2’, R1’ T4’ O1’

(1)
Insignifican

t

(2)
 Minor

(3)
Moderate

(4)
Significant

(5)
Catastrophi

c

P
ro

b
ab

ili
ty

Consequences

6 Risks - Technical

T5 - Obsolescence of vendor libraries and
services in the greenfield AI market.

● Mitigation approach: Avoid
● Mitigation:

○ Use OLLama backend
communication with the LLM,
allowing swappable LLM models
according to CueCode’s needs.

○ Use PgVector, an extension to the
FOSS PostgreSQL RDBMS, for
vector storage.

○ Develop a simple Python backend
without undue reliance popular AI
libraries, most of which are pre-v1
and, incidentally, overfit for
CueCode’s purpose.

Very likely (5)

Likely (4)

Possible (3) T7, T3’ T5

Unlikely (2) R2’, T1’,
T2’ T6 T2

Rare (1) O2’, R1’ T4’, T5’ O1’

(1)
Insignifican

t

(2)
 Minor

(3)
Moderate

(4)
Significant

(5)
Catastrophi

c

P
ro

b
ab

ili
ty

Consequences

6 Risks - Technical

T6 - The performance of an API model declines
with complexity.

● Mitigation approach: Continue
Monitoring

● Mitigation: Defer development of
frontend libraries until we know whether
backend processing takes so long as to
require asynchronous processing, instead
of request-response.

Very likely (5)

Likely (4)

Possible (3) T7, T3’ T6

Unlikely (2) R2’, T1’,
T2’ T6’ T2

Rare (1) O2’, R1’ T4’, T5’ O1’

(1)
Insignifican

t

(2)
 Minor

(3)
Moderate

(4)
Significant

(5)
Catastrophi

c

P
ro

b
ab

ili
ty

Consequences

6 Risks - Technical

T7 - Elevated demand may surpass the capacity
of the system, resulting in disruptions or delays.

● Mitigation approach: Continue
Monitoring

● Mitigation: As traffic increases,
scalability and efficiency are ensured
through:

○ Starting development with
architecture that allows scaling
(containerized 12-factor app)

○ Regular performance testing
○ Load balancing.

Very likely (5)

Likely (4)

Possible (3) T7, T3’

Unlikely (2) R2’, T1’,
T2’ T6’ T2

Rare (1) O2’, R1’,
T7’ T4’, T5’ O1’

(1)
Insignifican

t

(2)
 Minor

(3)
Moderate

(4)
Significant

(5)
Catastrophi

c

P
ro

b
ab

ili
ty

Consequences

6 Risks - Mitigation landscape

(5)

(4)

(3) T3’

(2) R2’, T1’,
T2’ T6’

(1) O2’,
R1’, T7’ T4’, T5’ O1’

(1) (2) (3) (4) (5)

P
ro

b
ab

ili
ty

Consequences

(5) T3

(4) T4

(3) T7 T5 T1 O1

(2) R1,
R2, T5,

T6
T2

(1) O2

(1) (2) (3) (4) (5)

P
ro

b
ab

ili
ty

Consequences

P
ro

b
ab

ili
ty

Before After

7 References

[1]
“Against LLM maximalism · Explosion.” Accessed: Sep. 10, 2024. [Online]. Available:
https://explosion.ai/blog/explosion.ai

[2]
E. at Zafin, “Bridging the Gap: Exploring use of Natural Language to interact with Complex Systems,”
Engineering at Zafin. Accessed: Sep. 10, 2024. [Online]. Available:
https://medium.com/engineering-zafin/bridging-the-gap-exploring-using-natural-language-to-interact-wit
h-complex-systems-11c1b056cc19

[3]
Y. Su, A. H. Awadallah, M. Khabsa, P. Pantel, M. Gamon, and M. Encarnacion, “Building Natural
Language Interfaces to Web APIs,” in Proceedings of the 2017 ACM on Conference on Information
and Knowledge Management, Singapore Singapore: ACM, Nov. 2017, pp. 177–186. doi:
10.1145/3132847.3133009.

[4]
“Firebase Genkit.” Accessed: Sep. 14, 2024. [Online]. Available:
https://firebase.google.com/docs/genkit

https://explosion.ai/blog/explosion.ai
https://explosion.ai/blog/explosion.ai
https://medium.com/engineering-zafin/bridging-the-gap-exploring-using-natural-language-to-interact-with-complex-systems-11c1b056cc19
https://medium.com/engineering-zafin/bridging-the-gap-exploring-using-natural-language-to-interact-with-complex-systems-11c1b056cc19
https://medium.com/engineering-zafin/bridging-the-gap-exploring-using-natural-language-to-interact-with-complex-systems-11c1b056cc19
https://doi.org/10.1145/3132847.3133009
https://doi.org/10.1145/3132847.3133009
https://firebase.google.com/docs/genkit
https://firebase.google.com/docs/genkit

7 References

[5]
“Function Calling.” Accessed: Sep. 14, 2024. [Online]. Available:
https://platform.openai.com/docs/guides/function-calling

[6]
guidance-ai/guidance. (Sep. 25, 2024). Jupyter Notebook. guidance-ai. Accessed: Sep. 25,
2024. [Online]. Available: https://github.com/guidance-ai/guidance

[7]
“OpenAPI Specification - Version 3.1.0 | Swagger.” Accessed: Sep. 10, 2024. [Online].
Available: https://swagger.io/specification/

[8]
OpenAPITools/openapi-generator. (Sep. 10, 2024). Java. OpenAPI Tools. Accessed: Sep. 10,
2024. [Online]. Available: https://github.com/OpenAPITools/openapi-generator

https://platform.openai.com/docs/guides/function-calling
https://platform.openai.com/docs/guides/function-calling
https://github.com/guidance-ai/guidance
https://swagger.io/specification/
https://github.com/OpenAPITools/openapi-generator

7 References

[9]
“Tool/function calling | LangChain.” Accessed: Sep. 14, 2024. [Online]. Available:
https://python.langchain.com/v0.1/docs/modules/model_io/chat/function_calling/

[10]
“What Is NLP (Natural Language Processing)? | IBM.” Accessed: Sep. 10, 2024. [Online].
Available: https://www.ibm.com/topics/natural-language-processing

[11]
“Cloud Natural Language,” Google Cloud. Accessed: Sep. 26, 2024. [Online]. Available:
https://cloud.google.com/natural-language

https://python.langchain.com/v0.1/docs/modules/model_io/chat/function_calling/
https://python.langchain.com/v0.1/docs/modules/model_io/chat/function_calling/
https://www.ibm.com/topics/natural-language-processing
https://cloud.google.com/natural-language
https://cloud.google.com/natural-language

7 References

[12]

“Projects · spaCy Usage Documentation,” Projects, 2016. https://spacy.io/usage/projects
(accessed Oct. 03, 2024).

[13]

“Firebase Genkit,” Firebase. https://firebase.google.com/docs/genkit

7 References

8 Appendix

8.1 Real World Product vs Prototype Table

Not in scope for Feasibility iteration 1.

That said, we will likely implement CueCode for OpenAPI specs but not GraphQL specs.

