
By Team: Red
Old Dominion University
CS 410
Fall 2024

Humanize Web APIs, without the headache

Table of Contents
I. Table of Contents ………………………………………….……………………………………………….………….…….. Slide 2 (Everyone)

II. Team Bios ……………………..…………………………………………………………………………….……………………. Slide 3 (John)

III. Feasibility ……………..………………………………………………….…………………………………………….…………. Slide 6 (John)

A. The Societal Problem ………………………………………………………………………………………….. Slide 8 (John)

B. Elevator Pitch ……………………………………………………………………………………………………… Slide 9 (John)

C. Problem Statement ……………………………………………………………………………………………… Slide 8 (John)

D. Problem Characteristics ………………………………………………………………………………………. Slide 12 (Kobe)

E. Current Process Flow ………………………………………………………………………………………….. Slide 14 (Chase/John)

F. Solution …….. Slide 23 (Chase)

G. Solution Statement ……………………………………………………………………………………………… Slide 24 (Chase)

H. Solution Characteristics ……………………………………………………………………………………… Slide 25 (Chase)

I. Solution Process Flow ………………………………………………………………………………………… Slide 26 (Andrew)

J. What It Will Do ……………………………………………………………………………………………………. Slide 28 (Fred)

K. What It Will Not Do …………………………………………………………………………………………….. Slide 28 (Fred)

L. Competition Matrix …………………………………………………………………………………………….. Slide 30 (Kobe)

IV. Design …….. Slide 37

A. Feature table ……………………………………………………………………………………………………….. Slide 38

B. Software / hardware tools ……………………………………………………………………………………. Slide 40

C. Development Tools ……………………………………………………………………………………………… Slide 41 (Diya)

D. Work breakdown structure overview ………………………………………………………………….. Slide 42

E. Algorithms ………. Slide 44

F. Major Functional Components ……………………………………………………………………………. Slide 45 (John/Diya)

G. Entity Relation Diagram ……………………………………………………………………………………….. Slide 50

H. Identified Risks and Mitigations …………………………………………………………………………… Slide 51 (Fred, John, Andrew, Diya)

I. Conclusion ……… Slide 62 (John)

V. Appendix A: REST API tools ……………………………………………………………………………………………… Slide 63 (Sean)

VI. References …… Slide 68

#
#

Team Bios - 1/3

John Hicks
A part-time Computer Science Major at ODU, transfer student from Tidewater Community
College (TCC) where he earned his Associate of Science with a specialization in Computer Science.
John has been employed full-time in software development and IT roles during most of his time in
school. John began his journey into software development when his parents’ small business
needed a website upgrade from Microsoft Frontpage to WordPress. On understanding
WordPress’s hook and filter mechanism, John’s imagination was kindled in wondering what other
ways of writing software there might be. That curiosity turned to flame and was formed into skill
with the help of many friends, family, internet contributors, workplace mentors and school faculty.

Freddie Boateng
A Computer Science major with a minor in Cybersecurity. He is from Northern Virginia and
currently working as a Cybersecurity Engineer with Zachary Piper Solutions. He strives to always
improve and stay updated to the world of technology, enabling him to reach his goals

Team Bios - 2/3

Kobe Franssen
Full time Computer Science major at ODU while also working part time as System
Administrator at the ODU Computer Science Consultant Group. Experienced in Java,
Python, C++ and API handling such as with Discord Bots. Love working on cars and
has 3 cats.

Diya Patel
A Junior at ODU, pursuing a Bachelor’s degree
in Computer Science. She is interested in
learning about the newest advancements in
web development and artificial intelligence.
She has an ongoing desire to take on new tasks
and expand her skill set.

Andrew Bausas
I am a computer science major from Virginia
Beach. I am to improve my skills and
eventually use them to make games.

Team Bios - 3/3

Sean Baker
Sean’s journey into computer science has been unconventional and spans both time and
institutions. A transfer student from Piedmont Virginia Community College (PVCC), Sean
earned his associate degree in computer science in 2016, but his tech journey began much
earlier. At 14, he built his first WordPress site to supplement hsi allowance, which led to
articles like “Ten reasons this IPhone will succeed”. Since then, rather than pursuing a
conventional corporate path, Sean has prioritized creativity and innovation, which has led
him to work on projects that push technological boundaries, including contributing to
self-driving car technologies with Edison2 and developing die cast automation software for
VisiTrak Worldwide and Rockwell Automation. His self-taught, autodidactic learning
approach has defined his career. Set to graduate this spring, Sean hopes to pursue a
masters degree.

Chase Wallace
A Computer Science and Biomedical Sciences double
major from Norfolk with a strong interest in
neuroscience and artificial intelligence. He is always
ready to learn new skills and broaden his horizons
with challenging new projects.

Feasibility

Why talk with Web APIs? - The Societal Problem

● User interfaces don’t speak the user’s language, but users rely on apps to make things happen.

● Developers are motivated to add Natural Language Processing (NLP) features to their apps, but

doing so is painstaking.

● Things happen in Web apps through Web Application Programming Interfaces (APIs).

● It is complex to turn natural language to structured data, which is what Web APIs must receive in

order to work (Su et al., 2017).

● Open source contributors and researchers are attempting to use new Large Language Models

(LLMs) to create Web API payloads (Zafin, 2023; Tool/Function Calling | LangChain, n.d), but

there is not mature tooling in this emerging part of the market.

Why CueCode? - Problem Statement

● No LLM tools available for Web API payload generation focus on putting a human or

deterministic business logic “in the loop” of payload generation.

● Enterprises and Software-as-a-Service (Saas) applications cannot afford to make every

function call an LLM recommends for data entry or triggering actions; that is too high risk.

● The inability for current tools to manage the risks of LLM usage gates Enterprises and

SaaS providers from developing AI applications while LLM technology matures.

=> There’s demand for API call payload generation, but no simple, operationalized, and
risk-aware tooling for it.

CueCode will use this opportunity to commoditize the process of turning natural language into

API payloads against existing existing Web APIs.

● CueCode lets a Web application generate REST API calls from natural language with minutes of
development time.

● A good OpenAPI specification and a few key questions are all CueCode needs to start generating
REST API requests.

● CueCode can add AI features to your app without any backend code changes or specialized NLP
or large language model (LLM) skills.

● This allows rapid development of natural language processing features, without having to risk
taking humans or business rules out of the loop.

Elevator Pitch

Quick example

● Example input: “I would like to book a hospital appointment on the 20th of October at 2pm for a
medical checkup.”

● Output: a full REST API payload for creation of an appointment on the 20th of October, in the
structured data format the REST API expects:

○ POST https://the-appointment-app.com/api/v1/appointments/

○ {"client":{"last_name": "Davis", "first_name":"Patricia"}, date: “2024-10-20”,
time: “1400” }

● This output can be shown to the user, put through business logic, or sent immediately to the
appointments REST API.

● The developer now has a choice about how to handle the suggested API payload.

Problem Characteristics - NLP/LLM challenges

Problems with current NLP/LLM processing for creating API calls:

● Require awareness of prompt engineering and other more complex AI techniques
○ => Time/money upskilling fullstack and Web developers.

● The NLP tools for generating API calls today are stand-alone programs and libraries that don't present a
unified, opinionated solution.

○ => Developers are left building one-off solutions.
○ => Heavy boilerplate/in-house frameworks.

● Humans and application logic are kept out of the loop in other approaches; this is high-risk.

Problem Characteristics - use of API specs

● Since APIs are commonly described with specifications, why not use those?
○ (Keep a clean contract between system components.)

● OpenAPI is the leading industry standard way to describe REST (REpresentational State Transfer)

APIs.

● However, there are no complete frameworks that leverage OpenAPI specifications when turning

natural language to REST API calls.

Problem Characteristics - NLP/LLM challenges

Problems with current NLP/LLM processing for creating API calls:

● Limiting Responses to fit an API Structure Is Difficult

● Lack of Understanding of Entity Relationships

● Absence of a Consistent Framework for Web Developers

Current Process Flow

Two example use cases:
1. Interactive with your end user, validated by user after generation
2. Batch oriented, processed with business logic generation

1. Design the interface between the customer’s application and the API call generation code.

2. (Not shown) Encode the OpenAPI spec structure for the algorithm to use later when generating and
validating payloads.

3. Tag entities and their relationships in the natural language input.

4. (Not Shown) Tell the LLM about the API structure

5. Make the existing application aware of LLM API call suggestions

2.3 Current Process Flow (Validation)

● Verify output is in JSON format (LangChain [9], Guidance AI [6])

● Once an API call is generated, confirm its structure conforms to the schema defined in the
OpenAPI spec.

● Confirm that the sequence of data manipulations is consistent with the new/modified entities’
relationships.

● For interactive applications confirm the generated API call with the user, and for batch
applications, validate the generated API call using business logic.

6. Validate that the generated payloads conform to the OpenAPI spec.

Current Process Flow

A solution for generating API calls would ideally address the following points.

● Design the interface between the customer’s application and the API call
generation code.

● Encode the OpenAPI spec structure for the algorithm to use later when
generating and validating payloads.. Options:

○ In Langchain, build Python classes that define the expected structure of the
LLM response (Tool/Function Calling | LangChain, n.d.).

○ OpenAI, use Function Calling schema specification and hope for the best.
(OpenAI Platform, n.d.; Tool/Function Calling | LangChain, n.d.)

● Tag entities and their relationships in the natural language input.
● Validate that the generated payloads conform to the OpenAPI spec.
● Tell the LLM about the API structure:

○ One-shot prompt is common in examples, but LLMs struggle to consistently
generate responses that are conformant to the spec
(Microsoft/Prompt-Engine, 2022/2024).

● Make the existing application aware of LLM API call suggestions:
○ For interactive apps, show the suggestions to the user.
○ For batch processing, push the generated API calls through business logic.

● Validation

No single application or
framework on the market
addresses all of these
concerns, and implementing
these solutions manually for
each application that wants
these features is tedious
and requires expertise in
using LLMs.

Solution

CueCode will provide a comprehensive service for creating Web API calls from natural language input in

a risk-aware, accurate manner that puts developers - and, by extension, users - in control of when API

calls are invoked.

Solution Statement

What that means:

Developers will be able to use existing API specifications, which CueCode makes understandable by
LLMs, to generate the content of their API calls in conformance with their API spec.

So, our client service representative can provide input to a booking application using CueCode in
natural language, “I called Patricia Davis and rescheduled her appointment from August 1st to August
16th.” The application can then use CueCode’s libraries, which have been configured using
documentation about the structure of their data, to generate the following Web API request with a
JSON request body:

POST https://the-appointment-app.com/api/v1/appointments/

{"request":{"reschedule":{"last": "Davis", "first":"Patricia", "from":{"month":8,
"day":1,"year":2024}, "to":{"month":8, "day":1,"year":2024}}}}

Which would then be used by the booking application to perform the API call, which will change the
appointment date in their database, or prompt the user for additional information.

Solution Characteristics
Problem Characteristics

- Forcing end users to fill out lots of
forms for input is both limiting and
tedious

- There is no easy way to implement
using NLP to parse user input for
existing applications

- It is difficult to make LLMs aware of the
structure of data expected from a
natural language prompt

- There is no standardized solution for
translating natural language into
structured data

- Translating natural language into
structured data requires prompt
engineering and other skill sets that do
not belong to a typical front end or full
stack developer

- LLM integration can cause data
mutation and incorrect parsing of
information

Solution Characteristics

- CueCode leverages LLM technology to
parse natural language into structured
data to generate API calls, simplifying
the process of data entry.

- CueCode provides libraries to front end
and full stack developers to easily
integrate NLP into their existing
applications

- Existing API specifications provide
machine-readable input to guide LLMs
into parsing user input from natural
language, saving developers time and
resources

- CueCode facilitates
Human-in-the-Loop feedback to allow
the end user to review the generated
data in the existing user interface

Solution Process Flow (configuration)

At configuration time:

● Developers ensure their OpenAPI specification is accurate.

● Developer uploads their API specification to CueCode via the Developer Portal

● Developer answer a few configuration questions.

● CueCode stores the structure and requirements for the API to aid the LLM in generating responses at

runtime.

● All of this is transparent to the Developer’s customers/end-users.

Use CueCode in your application:

● Program your app to pass natural

language text to CueCode libraries.

● Let the CueCode service figure out

the structured data contained in the

text.

● Use CueCode’s extracted

structured data within the existing

application’s data model. e.g.:
○ Show suggestions to the user

○ Perform API calls in a batch job

○ Validate through business rules

○ Whatever the use case requires

Solution Process Flow (runtime)

What it Will Do
● Will implement NLP capabilities to enable and

understand natural language
● Will offer a user friendly interface (API client

libraries) that developers can use
● Will provide a Developer Portal web application,

where developers can upload API specifications
and configure their CueCode service

● Will provide tools for customizing NLP models to
fit specific domains/industries ensuring better
performance for unique use cases.

● Will include documentation and support
resources to help developers implement and
troubleshoot various systems effectively.

● Will use REST API specifications, enabling
context-aware replies that complement the
distinct functionality and data structure of each
application.

● Will allow for real time analysis of natural
language and REST API call payload generation,
enhancing user experience through immediate
feedback and interactions.

What it Will Not Do

● Will not support languages other than English

● Will not replace human judgment when interpreting language in terms of making subjective

decisions beyond its programming.

● Will not act as an AI agent

● Will not provide user-facing applications; developers will need to build their own solutions

and install any necessary software/applications they need.

● Will not automatically make API calls on users' behalf; requests must first have human

permission before being fulfilled.

● Will not have programming tutorials, developers will need to possess knowledge of

programming to utilize CueCode effectively.

● As a student project, CueCode will not generate XML REST API payloads or GraphQL API

payloads

Competition Matrix - Introduction

CueCode OpenAI
Functions

Google Natural
Language API Spacy.io LangChain GenKit Phone AI

Alexa, Siri,...

✔- Full Implementation

P - Partial Implementation

Competition Matrix - ET

Feature CueCode OpenAI
Functions

Google Natural
Language API Spacy.io LangChain GenKit Phone AI

Alexa, Siri,...

Entity recognition ✔ ✔ ✔ P ✔

✔- Full Implementation

P - Partial Implementation

Example Prompt:
“I would like to book a hospital appointment on the 20th of
October for a medical checkup.”

With entity recognition:
Book, 20th october, medical checkup

Competition Matrix - PaP

Feature CueCode OpenAI
Functions

Google Natural
Language API Spacy.io LangChain GenKit Phone AI

Alexa, Siri,...

Plug and Play ✔ P P P

✔- Full Implementation

P - Partial Implementation

Competition Matrix - RAG

Feature CueCode OpenAI
Functions

Google Natural
Language API Spacy.io LangChain GenKit Phone AI

Alexa, Siri,...

Retrieval
Augmented
Generation

✔ ✔ ✔ ✔

✔- Full Implementation

P - Partial Implementation

LLM

Content

OUTPUTINPUT

Competition Matrix - service

Feature CueCode OpenAI
Functions

Google Natural
Language API Spacy.io LangChain GenKit Phone AI

Alexa, Siri,...

API call generation
as a service

✔ P P P P

✔- Full Implementation

P - Partial Implementation

INPUT API call

Feature CueCode OpenAI
Functions

Google Natural
Language API Spacy.io LangChain GenKit Phone AI

Alexa, Siri,...

Entity recognition ✔ ✔ ✔ P ✔

Plug and Play ✔ P P P
Retrieval
Augmented
Generation

✔ ✔ ✔ ✔

API call generation
as a service

✔ P P P P

Competition Matrix - review
✔- Full Implementation

P - Partial Implementation

Design: How will
we do it?

Notes on our engineering and current
concept for CueCode’s implementation

Features and prototype
scope

Who are we building for? User roles

● API Developer
○ Will be able to implement CueCode into the application backend, ensuring that the generated API

request conform to the API specifications.

○ Run through tests to ensure the system is generating the correct API request without errors.

● API Documentation Specialist
○ Will ensure that API specifications and documentation are clear, structured so they can be easily

understood by CueCode.

● User Interface Developer
○ Will be creating the user interface that interact with CueCode allowing user to input natural

language and interact with the system.

○ Ensure the interface provides a smooth, intuitive experience for users to interact with the NLP

features.

● Data Security
○ Will ensure that the CueCode system handles natural language input securely and that any data

generated through the API calls complies with data privacy regulations

● Customer’s end user
○ This is the end user who will submit natural language that will (eventually) get processed by

CueCode

Portal Login / Authentication

Account creation / deletion

✔

✔

✔

✔

✔

✔

 Config
REST API definition management

Upload and manage OpenAPI specifications

REST API configuration wizard

✔

✔

✔

✔

✔

✔

✔

✔

✔

Runtime
Process natural language and turn it into REST

API payloads

Map natural language to customer’s data entities
via search or API call

✔

✔

Client libraries Integrate application with CueCode’s NLP API ✔ ✔

NLP monitoring Trace, debug, and report on translation requests
in CueCode

✔ ✔ ✔

Marketplace Share CueCode API configurations with other
users

✔ ✔ ✔

Feature table - Developers and publishers

Portal Login / Authentication

Account creation / deletion

✔

✔

✔

✔

✔

✔

Config
REST API definition management

Upload and manage OpenAPI specifications

REST API configuration wizard

✔

✔

✔

✔

✔

✔

✔

✔

✔

Runtime
Process natural language and turn it into REST

API payloads

Map natural language to customer’s data entities
via search or API call

✔

✔

Client libraries Integrate application with CueCode’s NLP API ✔ ✔

NLP monitoring Trace, debug, and report on translation requests
in CueCode

✔ ✔ ✔

Marketplace Share CueCode API configurations with other
users

✔ ✔ ✔

Feature table

Category Feature Real-world
product Prototype

Portal Login / Authentication ✔ ✔

Account creation / deletion ✔ ✔

CueCode Config REST API definition management ✔ ✔

Upload and manage OpenAPI specifications ✔ ✔

REST API configuration wizard ✔ ✔

CueCode runtime Process natural language and turn it into REST API payloads ✔ ✔

Map natural language to customer’s data entities via search or
API call

✔

Client libraries Integrate application with CueCode’s NLP API ✔ ✔

NLP monitoring Trace, debug, and report on translation requests in CueCode ✔

Marketplace Share CueCode API configurations with other users ✔

Real-world vs. Prototype feature

User interface

User interface - outline

Login Page

Developer Dashboard

○ Summary of API usage, configuration progress, and performance metrics.
○ Quick access to "Upload OpenAPI Spec," "View Suggested Calls," and "Monitor

Configurations."

 Upload and Configuration

● OpenAPI Spec Upload:
○ File upload interface with validation.
○ Feedback on upload success/failure and spec completeness.

● Configuration Setup:
○ List of endpoints from the uploaded OpenAPI spec.
○ Interface to add natural language prompts for each endpoint.
○ Suggestions for optimizing the OpenAPI spec for CueCode.

● Entity Mapping:
○ Tools to map natural language entities to API parameters.
○ Auto-suggestions for commonly used mappings.

 Input and Payload Management

● Input Submission:
○ Text input box for testing natural language commands.
○ Option to upload batch text inputs for processing.

● Generated API Calls:
○ Display of structured JSON with suggested API calls.
○ Sequence validation to ensure correct order of execution.
○ Error explanations when no results are generated.

 Monitoring and Auditing

● Monitoring Dashboard:
○ Real-time view of input/output auditing.
○ Graphical representation of acceptance rates and usage trends.

● Detailed Auditing:
○ Log of all inputs with corresponding outputs.
○ Error reports for problematic inputs.
○ Configuration feedback for improving results.

Client Library Interaction

● Library Setup:
○ Instructions and code snippets for installing and initializing client libraries.
○ Authentication token management for client-side use.

● API Interaction:
○ Tools to test integration directly within the portal.
○ Error handling guides for common client-side issues.

 Marketplace Integration

● Search and Use Templates:
○ Search bar with filters for popular and effective configurations.
○ Preview and copy options for template configurations.

● Publish Configuration:
○ Form to upload and share configurations.
○ Visibility settings (public/private).

Help and Support

● FAQ and Documentation:
○ Links to guides for client library usage, OpenAPI spec preparation, and configuration.

● Support Tickets:
○ Interface for submitting issues and tracking resolution status.

Logout

● Accessible logout option available from any page.

Major Functional Components

● Client libraries for customers to use for integrating with CueCode’s service
○ Bindings for the CueCode runtime API

● Python modular monolith:
○ All modules exposed via Flask, a Python Web framework
○ Module: Web API payload Generation- receives natural language input and generates Web API calls from it.
○ Module: Developer Portal - account registration/management, API spec upload, configuration, generation audit

and monitoring
○ Horizontally scalable via 12-factor app methodology

● PostgreSQL (Postgres) persistence:
○ PgVector extension for storing vectors generated by the LLM
○ Normal Postgres tables for customer accounts, configuration, generation monitoring and audit information

● Dramatiq message queue
○ Implemented in Postgres; can change pub/sub mechanism to RabbitMQ or Redis as more

performance is needed. Simple implementation favored.
● Ollama:

○ A Web service and set of standardized LLM-call APIs that allows us to swap LLMs used while maintaining the
same API contract with our Python backend.

● Third-party identity service:
○ For developer portal
○ TBD on how/whether CueCode runtime API traffic would use the same identity provider for authentication.

Major Functional Components Diagram - Configuration

Major Functional Components Diagram - Runtime - Customer Application

Major Functional Components Diagram - Runtime - Payload Generation

Major Functional Components Diagram - Overview

Ollama PostgreSQL with PgVector
installed

Python Application - Configuration

Major Functional Components Diagram - Configuration

Developer
Portal -

OpenAPI spec
uploaded

JSON
Parser

Application Layer

OpenAPI
spec JSON Database tables

containing
function calls in

LLM readable
format

Select
relevant data from
OpenAPI spec to

create list of function
calls

JSON
Serializer

List of
function calls

List of function
calls (JSON)

Module -
Configuration

OpenAPI
spec (JSON)

Select relevant data from
OpenAPI spec. to create

representation of API

Database tables
with vector data

types
Deserialized

API spec

LLM
(Vectorizer)

API endpoint
spec definition

API endpoint
spec definition

(JSON)

Vector
Embeddings

Persistence LayerSupporting Services

Deserialized
API spec

Summary of key
Algorithms

Overview of what the algorithm does:

● Organizes OpenAPI spec into the relational database used to power runtime algorithms.

● Vectorizes of english prompts and keywords and stores them in the relational database to

power searches at runtime.

Configuration algorithm summary

Configuration algorithm details and diagram

Work in progress

● Natural language processing - detect entities, actions, relationships in text.

● Map detected verbs and nouns to HTTP verbs and entities represented by the REST API,

respectively.

● Given entities and and verbs, find the most relevant API endpoints for which to generate

payloads, since we cannot supply large OpenAPI specifications to the LLM prompt due to

prompt overflow.

● (Not in prototype) Determine if live API data is needed to translate natural language, or if

data in the natural language is sufficient to create payloads. Fetch any data needed from

the target API.

● LLM Function Calls for generating consistently structured JSON output

● Prompt LLM to generate API payload using defined function calls

Runtime algorithm summary

● Natural language processing -

detect entities, actions,

relationships in text.

● Get the lemma of each verb in

the sentence (SpaCy Linguistic

Features - Lemmatization, n.d.)

● Get the noun chunks in each

sentence (SpaCy Linguistic

Features - Noun Chunks, n.d.)

● SpaCy pipe for parallel

processing (Rao, 2024)

Split sentences, identify nouns and verbs with SpaCy

● Embed nouns and verbs

● Cosine similarity search to find the most relevant

endpoints, based on endpoint prompt, noun, and

verb embeddings, with SQL join logic to bring it

together.
○ (Pgvector/Pgvector, 2021/2024; Prabhakaran, 2018;

Zafin, 2023)

● The LLM specifies a tool call and with which

parameters to call the tool. Our tools generate

payloads.

● Optimizations made:
○ Parallel execution of IO bound processes works well

in Python (but not CPU bound processes) due to the

Global Interpreter Lock (GIL) (Jesse, 2017).

● Potential optimizations left on the table with the

prototype implementation:
○ Precomputation of verb and/or noun embeddings

○ Caching layer

○ Use an embedding with fewer dimensions

Perform embeddings, query for
relevant endpoints, prompt LLM

Sort:

● Symbol table instead of IDs

● Lookups against symbol table

● Comparators for sorting according to these data dependencies

● Data dependencies come from the database, openapi_entity table

Finally, return the result to the client

Sort payloads according to data dependencies

Data design and
management

Database design

● Minimum data storage needs for the CueCode algorithms:
○ API spec document (it is simplest to keep in the DB as a TEXT column)

○ OpenAPI Paths, the spec for each API endpoint

○ OpenAPI Schema Objects, which define the entities represented in the API. CueCude stores these

as entities in the openapi_entity table.

○ OpenAPI Server object, because all Paths rely on a Server object to give their base URL.

● Need to facilitate three (3) cosine similarity searches for:
○ Endpoint selection - openapi_path table

○ Entity selection - openapi_entity table

○ Verb lemma recognition - verb_lemma table

● Handle asynchronous processing of the OpenAPI specs, as uploaded to the CueCode

Developer Portal:
○ Table configuration_job stores info about each configuration run for showing to the user

○ Table dramatiq.queue is an implementation detail of our database-based message broker.

● Normalization of vector tables is optimized to provide vector search while minimizing

storage

Entity Relation Diagram (ERD)

Note: these tables will not
be in the prototype

Database management

● Due to heavy use of PgVector extension, it is likely we cannot use a managed database

service, such as AWS RDS (CITATION), for CueCode.
○ => Run Postgres in a Docker container (CITATION for DockerHub) for production and

development environments.

● Dbmate for schema management (CITATION)

● Pg-dramatiq command line interface (CLI) for managing asynchronous task queue

● Entity relationship diagram as on next slide (CITATION).

● Backups: Automation of pg_dump command-line utility to take backups (CITATION)

Software and hardware
tools

Software / Hardware Tools (1 of 2)
Software Hardware

● Frontend:

○ HTML

○ CSS

○ Bootstrap 5

○ JavaScript

● API clients

○ Swagger CodeGen

● Application layer

○ Python

○ Flask Web framework

○ Jinja HTML templating

○ Dramatiq for asynchronous task

processing

● Application libraries

○ Spacy.io for NLP

○ Ollama Python client

○ OpenAPI spec validator

● Persistence layer

○ PostgreSQL

○ PgVector

○ pg-dramatiq for Postgres-based message

broker

● LLM

○ Ollama

○ Llama 3.2

● Third-party

○ identity service

○ Transactional email

● Testing

○ Jest

○ PyUnit

○ PyLint (enforce module boundaries, etc.)

● CI/CD

○ GitHub Actions

○ Docker registry

● Hardware

○ GPU-equipped Kubernetes node(s) in CS

Systems Group cluster

https://dramatiq.io/
https://github.com/ollama/ollama-python/tree/main
https://github.com/python-openapi/openapi-spec-validator
https://gitlab.com/dalibo/dramatiq-pg

Development Tools:

Languages

● HTML, CSS, JavaScript
○ For frontend development and UI/UX.

● Python
○ Backend application logic and integrations.

Frameworks

● Bootstrap 5
○ CSS framework for responsive and modern design.

● Flask
○ Lightweight Python web framework for backend development.

● Jinja
○ Templating engine for rendering dynamic HTML.

Platform

● Docker
○ Containerization for consistent environments across development and production.

IDE

● Visual Studio Code (VS Code)
○ Preferred IDE with powerful extensions for Python and web development.

Developer OS

● Linux
○ Stable and compatible development environment.

● Windows
○ Can be used with WSL or Docker for seamless development.

API and Components

● Swagger CodeGen
○ Generates API client libraries for integrations.

● Spacy.io
○ NLP library for natural language processing.

● Ollama Python Client
○ API interface for interacting with LLM services.

● OpenAPI Spec Validator
○ Ensures uploaded API specs meet required standards.

Database

● PostgreSQL
○ Core database for managing user data and configurations.

● PgVector
○ Extension for storing vector embeddings from LLMs.

● pg-dramatiq
○ Postgres-based message broker for asynchronous task management.

Version Control

● Git with GitHub
○ Manages source code and facilitates collaboration.

Testing Framework

● Jest
○ Frontend testing framework for JavaScript components.

● PyUnit
○ Unit testing for backend Python application logic.

● PyLint
○ Enforces code quality and module boundary rules.

CI/CD

● GitHub Actions
○ Automates testing, builds, and deployments.

● Docker Registry
○ Stores containerized application images for seamless deployment.

Work breakdown
structure

Unit testing

Integration
testing - LLM

integration and
other

System testing

User
acceptance

testing

Work breakdown structure overview

CueCode

User interfaces

Developer Portal:
Configuration

Wizard

Developer Portal:
Account

management

Developer Portal:
Monitoring

Client libraries

AlgorithmsProduct mgt

Requirements

User stories

UI Mockups

Sprint planning

Mentor
feedback

Prompt
engineering

OpenAPI spec
encoding/
decoding

OpenAPI spec
vectorization

API payload
ordering

Database

OpenAPI specs

OpenAPI spec
vectorization and

other encoding

Developer Portal
config

API credentials

Testing

Work breakdown structure - User Interface

Publish
Configuration

Search and
Copy

Templates

Configuration
Approval and

Removal

User Interface

Developer Portal:
Account

Management

-Account Creation

- Login/
Authentication

-User Roles /
Profile
Management

Developer Portal:
Monitoring

Developer
Portal:

Configuration
Wizard

- Welcome
Wizard

- API
Configuration
setup

- Entity
Mapping

Input / Output
Auditing

Acceptance Rate
Tracking

Configuration
Review

Client Libraries

Library Setup

API Interaction

Error Handling

API
Configuration
Marketplace

Type-checks on
function calls

Consistency of
relationship symbol

table

Log acceptance rate
of payloads via client

libraries.

Procedure to build LLM
Function Call

definitions and default
prompts for every

“Schema Object” in
Open API spec,

vectorize the prompts
via Ollama, then store

in the database.

Algorithm that selects
top n most relevant
function calls for a

given text, using cosine
similarity search

against saved “Schema
Object” prompts and

records.

Work breakdown structure - Algorithms

Algorithms

OpenAPI spec
encoding

Build procedure that maps
API endpoint attributes to

database record.

Detect Schema Object
relationships via OpenAPI

spec Schema Objects,
Reference Objects, and URL

path construction; store
relationship info in database.

Reject OpenAPI specs not
within CueCode

requirements.

Develop meta specification
for OpenAPI, as needed.

Payload ordering
Configure and

select LLM tool
Calls

Develop identifier symbol
table to track relationships

of entities with as-yet
unknown identifiers.

Develop Client libraries to
update symbol table copy

locally asa entities are
created by the target REST

API.

Prompt LLM and
retrieve results

Provide few-shot prompt
from OpenAPI examples

section, as available.

Provide function specs for
pre-selected Function calls
for generating structured

JSON.

Call JSON generation
functions with correct
symbol given current

payload ordering state.

Keep order of payloads
correct during LLM

generation using entity
identifier symbol table.

Validation of
results

Work breakdown structure - Database

SQL

Authentication

Database

Schema

Template of data
formats and how

they link together
in object relations

Data Types System

PostgreSQL

OpenAPI
playbook

pgVector

Management

Data Persistence

High Availability

Response time

Interactions

Sprint breakdown

Sprint 1….

● CS Systems Group Git access

● CS Systems Group CI/CD pipeline access

● Configure local development environment:
○ Ollama in Docker

○ Postgres 17 with PgVector in Docker

● Document common development tasks and tool commands

● VS Code extensions

● Unit testing framework set up

● Flask app folder structure

● Python module folder structure and Pylint module boundary enforcement

● As a Developer, I need to create an account.

● As a Developer, I need to login.

Sprint 2….

● Tech task: Database schema constructed in support of this sprint’s stories.

As a Developer:

● I need to be able to log into CueCode via client library to authenticate and interact with

the system.

● I need to upload an OpenAPI spec to CueCode.

● I need to receive feedback on when the configuration process is done.

● I need CueCode to validate that the generated payloads conform to my configured

Swagger specification.
○ CueCode config process started.

○ Function call definition construction

Sprint 3…

As a Developer:

● I need to be presented with configuration options required to start generating payloads

for the given OpenAPI spec.

● I want to add natural language prompts to each endpoint defined in the OpenAPI

specification per CueCode’s instructions on how to get good results.

● I need CueCode to return zero or more suggested API calls to make, given a text input.
○ Prompt LLM with function call defs, process function calls to produce structured payloads

● I need CueCode to recognize entities described in the natural language input.

Sprint 4…

As a Developer:

● I need to send text to CueCode via client libraries

● I need CueCode to return results in the correct order in which my application would need

to issue the API calls.

● I need to issue API requests in sequence, using entities that might not exist yet.

● I need to receive structured JSON representing suggested API calls

● I want CueCode to return why it could not generate results, when none can be generated.

Sprint 5….

● Finalize anything else needed.

● Automated testing

● Development of demo examples

● As a Developer, I want to see feedback on how to make my OpenAPI spec more effective

when using CueCode.

Risk management

Risks the CueCode project faces and their mitigations

Our risk coding convention:

● “O” - Operational risks

● “R” - Regulatory risks

● “T” - Technical risks

Risks

Risks - Customer, Operational, Regulatory

Very likely (5) T3

Likely (4) T4

Possible (3) T7 T5 T1 O1

Unlikely (2)
R2’ R1, R2,

T6 T2

Rare (1) O2’ O2 O1’

(1)
Insignifican

t

(2)
 Minor

(3)
Moderate

(4)
Significant

(5)
Catastrophi

c

O1 - Unable to procure GPU Hardware for
development.

● Mitigation approach: Control
● Mitigation:

○ In Spring ‘25, execute an already
approved request for GPU time
with the CS Systems Group

O2 - CueCode customers may overlook critical
security or operational risks when generating
API calls.

● Mitigation approach: Continue
Monitoring

● Mitigation: Perform thorough logging,
audits to provide detailed error checking
tools for developers.

P
ro

b
ab

ili
ty

Consequences

Risks - Customer, Operational, Regulatory

R1 - The use of API specifications might infringe
on proprietary or closed API usage policies,
leading to legal issues.

● Mitigation approach: Avoid
● Mitigation: Check downstream API usage

against known limits, check with
professionals about API licenses, develop
and publish a platform abuse notice
process for API providers to use, and stay
away from violating proprietary API
standards and procedures.

Very likely (5) T3

Likely (4) T4

Possible (3) T7 T5 T1

Unlikely (2)
R2’ R1, R2,

T6 T2

Rare (1) O2’, R1’ O1’

(1)
Insignifican

t

(2)
 Minor

(3)
Moderate

(4)
Significant

(5)
Catastrophi

c

P
ro

b
ab

ili
ty

Consequences

Risks - Customer, Operational, Regulatory

R2 - Storage of API credentials makes CueCode
an enticing target for cybersecurity attacks.

● Mitigation approach: Control
● Mitigation:

○ Legal - apply terms of use that
protect CueCode in the case of
data breach.

○ Technical - separate tenant
credentials with care.

○ Technical - guide developers to use
scoped API keys; use OAuth2
where possible for user-specific
data

Very likely (5) T3

Likely (4) T4

Possible (3) T7 T5 T1

Unlikely (2) R2’ R2, T6 T2

Rare (1) O2’, R1’ O1’

(1)
Insignifican

t

(2)
 Minor

(3)
Moderate

(4)
Significant

(5)
Catastrophi

c
P

ro
b

ab
ili

ty

Consequences

Risks - Technical

T1 - LLM won't generate API calls without
few-shot prompt examples.

● Mitigation approach: Control
● Mitigation:

○ Validation process for prompt
engineering.

○ Require that developers include a
few examples in their OpenAPI
specs.

Very likely (5) T3

Likely (4) T4

Possible (3) T7 T5 T1

Unlikely (2) R2’, T1’ T6 T2

Rare (1) O2’, R1’ O1’

(1)
Insignifican

t

(2)
 Minor

(3)
Moderate

(4)
Significant

(5)
Catastrophi

c
P

ro
b

ab
ili

ty

Consequences

Risks - Technical

T2 - LLM won't generate API calls without
hundreds or thousands of examples.

● Mitigation approach: Continue
Monitoring.

● Mitigation:
○ If risk is realized, then pivot to

change value propositions and
require backend development
from the customer

Very likely (5) T3

Likely (4) T4

Possible (3) T7 T5

Unlikely (2) R2’, T2’ T6 T2

Rare (1) O2’, R1’ O1’

(1)
Insignifican

t

(2)
 Minor

(3)
Moderate

(4)
Significant

(5)
Catastrophi

c
P

ro
b

ab
ili

ty

Consequences

Risks - Technical

T3 - Vastness of frontend API client ecosystem
precludes building CueCode client libraries for
all popular languages and frameworks.

● Mitigation approach: Transfer
● Mitigation:

○ Use Swagger CodeGen for our
own CueCode backend API.

○ Open-source our client library
code.

T4 - Potential exposure of sensitive API
information through generated API calls.

● Mitigation approach: Control
● Mitigation: separate API authentication

and LLM generation concerns in the
CueCode payload generation algorithm.

Very likely (5) T3

Likely (4) T4

Possible (3) T7, T3’ T5

Unlikely (2) R2’, T1’,
T2’ T6

Rare (1) O2’, R1’ T4’ O1’

(1)
Insignifican

t

(2)
 Minor

(3)
Moderate

(4)
Significant

(5)
Catastrophi

c

P
ro

b
ab

ili
ty

Consequences

Risks - Technical

T5 - Obsolescence of vendor libraries and
services in the greenfield AI market.

● Mitigation approach: Avoid
● Mitigation:

○ Use OLLama backend
communication with the LLM,
allowing swappable LLM models
according to CueCode’s needs.

○ Use PgVector, an extension to the
FOSS PostgreSQL RDBMS, for
vector storage.

○ Develop a simple Python backend
without undue reliance popular AI
libraries, most of which are pre-v1
and, incidentally, overfit for
CueCode’s purpose.

Very likely (5)

Likely (4)

Possible (3) T7, T3’ T5

Unlikely (2) R2’, T1’,
T2’ T6 T2

Rare (1) O2’, R1’ T4’, T5’ O1’

(1)
Insignifican

t

(2)
 Minor

(3)
Moderate

(4)
Significant

(5)
Catastrophi

c

P
ro

b
ab

ili
ty

Consequences

Risks - Technical

T6 - Our validation processes might find that
CueCode might require a lot of time to provide
accurate results, especially if generating many
API payloads.

● Mitigation approach: Continue
Monitoring

● Mitigation: Defer development of
frontend libraries until we know whether
backend processing takes so long as to
require asynchronous processing, instead
of request-response.

Very likely (5)

Likely (4)

Possible (3) T7, T3’ T6

Unlikely (2) R2’, T1’,
T2’ T6’ T2

Rare (1) O2’, R1’ T4’, T5’ O1’

(1)
Insignifican

t

(2)
 Minor

(3)
Moderate

(4)
Significant

(5)
Catastrophi

c

P
ro

b
ab

ili
ty

Consequences

Risks - Technical

T7 - Elevated demand may surpass the capacity
of the system, resulting in disruptions or delays.

● Mitigation approach: Continue
Monitoring

● Mitigation: As traffic increases,
scalability and efficiency are ensured
through:

○ Starting development with
architecture that allows scaling
(containerized 12-factor app)

○ Regular performance testing
○ Load balancing.

Very likely (5)

Likely (4)

Possible (3) T7, T3’

Unlikely (2) R2’, T1’,
T2’ T6’ T2

Rare (1) O2’, R1’,
T7’ T4’, T5’ O1’

(1)
Insignifican

t

(2)
 Minor

(3)
Moderate

(4)
Significant

(5)
Catastrophi

c

P
ro

b
ab

ili
ty

Consequences

Risks - Mitigation landscape

(5)

(4)

(3) T3’

(2) R2’,
T1’, T2’ T6’

(1) O2’,
R1’, T7’ T4’, T5’ O1’

(1) (2) (3) (4) (5)

P
ro

b
ab

ili
ty

Consequences

(5) T3

(4) T4

(3) T7 T5 T1 O1

(2) R1,
R2, T5,

T6
T2

(1) O2

(1) (2) (3) (4) (5)

P
ro

b
ab

ili
ty

Consequences

P
ro

b
ab

ili
ty

Before
After

Conclusion

● Leverages existing tools and techniques

● Develops a framework for developers

● Delights users

● Reduces risk for important actions/data entry

=> so that you can Humanize Web APIs, without the headache.

Questions and
discussion

Appendix A

REST API tooling

How do we currently get Json Payloads

Swagger Hub, Openapi…Postman, requests libraries
And many many more

Swagger Hub Example

API TESTING
Mock Servers
API Detection

Example Postman Usage

Algorithms

Appendix B

Config time - user interaction: validate and save uploaded
OpenAPI spec

● Receive uploaded file from the Developer Portal spec upload page.

● Validate that the file provided is a valid OpenAPI spec, using the library:

https://github.com/python-openapi/openapi-spec-validator

● If OpenAPI spec is valid:

○ Do all of the following with a single Postgres DB transaction, commit if

successful:

■ save text of OpenAPI spec into Postgres in openapi_spec table with

is_live = false, config_is_finished = false.

■ Create configuration_job record corresponding to the newly uploaded

OpenAPI spec.

○ Save job in Dramatiq for configuring OpenAPI specification specifying the

OpenAPI spec by ID.

https://github.com/python-openapi/openapi-spec-validator

Config time - asynchronous job (Dramatiq): Encode OpenAPI spec
for CueCode and set defaults.

● Extract all Server Objects from OpenAPI spec and save as openapi_server.

● Extract all Schema Objects from OpenAPI spec and save each as an

openapi_entitity

○ Set noun_prompt as the name Schema Object reference name, for a default. If

present, use x-cuecode-prompt.

■ https://swagger.io/specification/#specification-extensions

○ https://swagger.io/specification/#schema-object

● Extract all Path Objects from OpenAPI spec and save each as an openapi_endpoint.

○ Use x-cuecode-prompt if present; otherwise, use Path summary and

description from

■ https://swagger.io/specification/#specification-extensions

○ OpenAPI spec are concatenated to form openapi_endpoint.selection_prompt.

https://swagger.io/specification/#specification-extensions
https://swagger.io/specification/#schema-object
https://swagger.io/specification/#specification-extensions

Config time - asynchronous job (Dramatiq): Encode OpenAPI spec
for CueCode and set defaults.

● Detect Schema Object relationships via OpenAPI spec Schema Objects,
Reference Objects, and URL path construction; store relationship info in
database.

○ Find relationships in URLs with ref objects (e.g., “$ref: CustomerID”)

○ Construct openapi_entity relationship graph using OpenAPI spec; save to

database in openapi_entity and openapi_entity_dependency tables.

● Set job status to “pending review”.

Config time - user interaction: Validate edits from Developer
during preview time

● Triggered when the user attempts to set the spec config job status to Finalizing.

● Validation: Confirm all prompts are filled in before allowing the Developer to pass

the Dramatiq job to the next stage.

● Once all prompts filled are in, allow Developer move Dramatiq job to stage “Final

Vectorization”.

Config time - asynchronous job (Dramatiq async job library)

● Call Ollama to vectorize all prompts specified in the Dramatiq payload; save to the database. Use

one transaction.

● Procedure to build LLM Function Call definitions Path in Open API spec.

○ Ollama docs: https://ollama.com/blog/tool-support

○ Starting point for OpenAPI spec encoding:

https://github.com/openai/openai-cookbook/blob/main/examples/Function_calling_with_

an_OpenAPI_spec.ipynb

○ Steps:

■ Replace all references (Schema Object or otherwise) with actual values.

■ Adjust OpenAI Cookbook example to encode a dictionary in Ollama format

● Format as needed here:

https://github.com/ollama/ollama-python/tree/main

■ Save as JSONB in the Postgres database, in the corresponding openapi_path

record.

● Update the openapi_spec.config_is_finished value to “true”.
● Move the Dramatiq job to “Completed” status.

https://ollama.com/blog/tool-support
https://github.com/openai/openai-cookbook/blob/main/examples/Function_calling_with_an_OpenAPI_spec.ipynb
https://github.com/openai/openai-cookbook/blob/main/examples/Function_calling_with_an_OpenAPI_spec.ipynb
https://github.com/ollama/ollama-python/tree/main

Runtime: Algorithm that selects top N most relevant endpoints for
a given sentence

Data structures:

Class Endpoint {
Name // maps to db column
Others…. But they aren’t relevant in discussion of this algorithm.
ParentName // for mapping dependencies

}

Class EndpointRecommendation {
sentence: ParsedSentence
endpoints : List of Endpoint

}

Class ParsedSentence {
Sentence text
Spacy parse

}

Class ParsedText {
Original text
Sentences: List of ParsedSentence // expected in order of original text

}

Runtime: Algorithm that selects top N most relevant endpoints for
a given sentence

Output: list of EndpointRecommendation objects.

Notes:
● There are three kinds of prompts used for each endpoint, each with a separate embedding columns,

which are accessed using SQL queries via the PgVector extension:
○ A single openapi_path.selection_prompt, whose embedding (field selection_prompt_embedding)

is used in a cosine similarity search when determining which OpenAPI Paths to supply to the
LLM as Tool Call specifications.

■ Note: We supply Paths as Tool Call specifications to avoid the difficult task of having the
LLM generate structured data.

○ Many openapi_verb_http_equiv, whose embedding (field verb_lemma_embedding) is used in a
cosine similarity search when determining the action being taken on an entity.

○ The prompt we give the LLM in the function call definition (not stored in vectorized format)

Runtime: Algorithm that selects top N most relevant endpoints for
a given sentence

Steps of the algorithm:
● Split into sentences.

○ SpaCy sentencizer https://spacy.io/api/sentencizer
● For each sentence:

○ Use spacy to identify “noun chunks” and “lemmatized” verbs in each sentence.
■ https://spacy.io/usage/linguistic-features#lemmatization
■ https://spacy.io/usage/linguistic-features#noun-chunks

○ For each sentence:
■ Embed the noun chunk for the sentence with Ollama and save to a data structure for the current

sentence.
● https://github.com/ollama/ollama-python/tree/main?tab=readme-ov-file#embed

■ Embed the noun chunk for the sentence with Ollama and save to a data structure for the current
sentence.

● https://github.com/ollama/ollama-python/tree/main?tab=readme-ov-file#embed

https://spacy.io/api/sentencizer
https://spacy.io/usage/linguistic-features#lemmatization
https://spacy.io/usage/linguistic-features#noun-chunks
https://github.com/ollama/ollama-python/tree/main?tab=readme-ov-file#embed
https://github.com/ollama/ollama-python/tree/main?tab=readme-ov-file#embed

Runtime: Algorithm that selects top N most relevant endpoints for
a given sentence

● Use a parameterized SQL query to
○ Find up to M verb_lemma records matching the user intent, using cosine similarity between an

embedding of the verb lemma - identified by spaCy - and the
verb_lemma.verb_lemma_embedding column.

○ Find openapi_ver_http_equiv records that correspond to the top M verbs found.
○ Find openapi_entity records that match the openapi_entity.noun_prompt_embedding with an

embedding of the noun chuck.
○ Match the openapi_entity records with openapi_ver_http_equiv records via a JOIN.
○ JOIN to openapi_endpoint, whose records are also returned based on a cosine similarity search

on the selection_prompt_embedding field and the sentence.
● Get the top N results from the DB, which will include the names of the endpoints.
● Return list of EndpointRecommendation from subroutine.
● Resources:

○ https://www.machinelearningplus.com/nlp/cosine-similarity/
○ https://github.com/pgvector/pgvector?tab=readme-ov-file#querying

https://www.machinelearningplus.com/nlp/cosine-similarity/
https://github.com/pgvector/pgvector?tab=readme-ov-file#querying

Other algorithms

● Build function call definition from Schema Object

● Validate OpenAPI specs for compatibility with CueCode

● Develop identifier symbol table to track relationships of entities with as-yet

unknown identifiers.

● Develop Client libraries to update symbol table copy locally as entities are created

by the target REST API.

● Provide few-shot prompt from OpenAPI examples section, as available.

● Provide function specs for pre-selected Function calls for generating structured

JSON.

● Call JSON generation functions with correct symbol given current payload

ordering state.

● Keep order of payloads correct during LLM generation using entity identifier

symbol table.

● Type-checks on LLM function calls

● Consistency of relationship symbol table

● Log acceptance rate of payloads via client libraries.

User stories

User Stories: Initiative core functionality

● (Epic: client library integration)
○ As a Developer, I

■ Need to send text to CueCode via client libraries
■ Need to receive structured JSON representing suggested API calls
■ Need to issue API requests in sequence, using entities that might not exist yet.

● (Epic: account creation)
● (Epic: login)
● (Epic: upload OpenAPI/Swagger specification for an API)

○ As a Developer, I
■ Need to upload an OpenAPI spec to CueCode
■ Need to receive feedback on when the configuration process is done.
■ Need to be presented with configuration options required to start generating payloads for the given

OpenAPI spec.
■ Need to add natural language prompts to each endpoint defined in the OpenAPI specification per

CueCode’s instructions on how to get good results.
■ Want to see feedback on how to make my OpenAPI spec more effective when using CueCode.

● (Epic: entity detection)
○ As a Developer, I

■ Need CueCode to recognize entities described in the natural language input.
■ Want CueCode to perform lookups when entities do not appear in the natural language as they do in my

system (e.g., first name, not unique identifier is used in text)
● (Epic: payload generation)

○ As a Developer, I
■ Need CueCode to return zero or more suggested API calls to make, given a text input.
■ Need CueCode to return results in the correct order in which my application would need to issue the API

calls.
■ Need CueCode to validate that the generated payloads conform to my configured Swagger specification.
■ Want CueCode to return why it could not generate results, when none can be generated.

User Stories: As A Developer

● As a developer, I would like to be able to return in the correct order in which my application would need

to issue the API calls to avoid errors in execution.

● As a developer, I would like CueCode to return clear explanation of why no results were generated such

as missing parameters, unrecognizable entities etc.

● As a developer, I would like to address any issues with input or configurations.

● As a developer. I need CueCode to return zero or more suggested API calls, so that I can integrate the

recommended calls into my application.

● As a deve;oper, I need to be able to upload an OpenAPI spec so that the system can understand the API

structure and generate payloads.

● As a developer, I need to be able to log into CueCode via client library to authenticate and interact with

the system.

● As a developer, I need to be able to create an account through CueCode’s client library.

● As a developer, I need to receive structured JSON representing suggested API calls to understand the

recommended sequence of actions my application should take.

References

References

About continuous integration with GitHub Actions. (n.d.). GitHub Docs. Retrieved October 22, 2024, from

https://docs.github.com/en/actions/about-github-actions/about-continuous-integration-with-github-actions

About Git. (n.d.). GitHub Docs. Retrieved October 22, 2024, from

https://docs.github.com/en/get-started/using-git/about-git

Against LLM maximalism · Explosion. (2023, May 18). https://explosion.ai/blog/explosion.ai

Baker, S. (2024). Paragonsean/ChatBotAsync [Python]. https://github.com/paragonsean/ChatBotAsync (Original work

published 2024)

Cloud Natural Language. (n.d.). Google Cloud. Retrieved September 26, 2024, from

https://cloud.google.com/natural-language

Evaluation | Genkit. (n.d.). Firebase. Retrieved September 14, 2024, from

https://firebase.google.com/docs/genkit/evaluation

Firebase Genkit. (n.d.). Retrieved September 14, 2024, from https://firebase.google.com/docs/genkit

Function Calling. (n.d.). Retrieved September 14, 2024, from https://platform.openai.com/docs/guides/function-calling

https://docs.github.com/en/actions/about-github-actions/about-continuous-integration-with-github-actions
https://docs.github.com/en/actions/about-github-actions/about-continuous-integration-with-github-actions
https://docs.github.com/en/get-started/using-git/about-git
https://docs.github.com/en/get-started/using-git/about-git
https://explosion.ai/blog/explosion.ai
https://github.com/paragonsean/ChatBotAsync
https://cloud.google.com/natural-language
https://cloud.google.com/natural-language
https://firebase.google.com/docs/genkit/evaluation
https://firebase.google.com/docs/genkit/evaluation
https://firebase.google.com/docs/genkit
https://platform.openai.com/docs/guides/function-calling

References

Learn Data with Mark (Director). (2023, July 26). Returning consistent/valid JSON with OpenAI/GPT [Video recording].

https://www.youtube.com/watch?v=lJJkBaO15Po

Lorica, B. (2024, January 25). Expanding AI Horizons: The Rise of Function Calling in LLMs. Gradient Flow.

https://gradientflow.com/expanding-ai-horizons-the-rise-of-function-calling-in-llms/

Merritt, R. (2023, November 15). What Is Retrieval-Augmented Generation aka RAG? NVIDIA Blog.

https://blogs.nvidia.com/blog/what-is-retrieval-augmented-generation/

Microsoft/prompt-engine. (2024). [TypeScript]. Microsoft. https://github.com/microsoft/prompt-engine (Original work

published 2022)

Natural Language Processing [NLP] Market Size | Growth, 2032. (n.d.). Retrieved September 14, 2024, from

https://www.fortunebusinessinsights.com/industry-reports/natural-language-processing-nlp-market-101933

OpenAI Platform. (n.d.-a). Retrieved September 10, 2024, from https://platform.openai.com

OpenAI Platform. (n.d.-b). Retrieved October 24, 2024, from https://platform.openai.com

https://www.youtube.com/watch?v=lJJkBaO15Po
https://www.youtube.com/watch?v=lJJkBaO15Po
https://gradientflow.com/expanding-ai-horizons-the-rise-of-function-calling-in-llms/
https://gradientflow.com/expanding-ai-horizons-the-rise-of-function-calling-in-llms/
https://blogs.nvidia.com/blog/what-is-retrieval-augmented-generation/
https://blogs.nvidia.com/blog/what-is-retrieval-augmented-generation/
https://github.com/microsoft/prompt-engine
https://www.fortunebusinessinsights.com/industry-reports/natural-language-processing-nlp-market-101933
https://www.fortunebusinessinsights.com/industry-reports/natural-language-processing-nlp-market-101933
https://platform.openai.com
https://platform.openai.com

References

OpenAPI Specification—Version 3.1.0 | Swagger. (n.d.). Retrieved September 10, 2024, from

https://swagger.io/specification/

OpenAPITools/openapi-generator. (2024). [Java]. OpenAPI Tools. https://github.com/OpenAPITools/openapi-generator

(Original work published 2018)

piembsystech. (2023, October 2). Dynamic Binding in Python Language. PiEmbSysTech.

https://piembsystech.com/dynamic-binding-in-python-language/

SpaCy · Industrial-strength Natural Language Processing in Python. (n.d.). Retrieved September 26, 2024, from

https://spacy.io/

Stanfordnlp/dspy. (2024). [Python]. Stanford NLP. https://github.com/stanfordnlp/dspy (Original work published 2023)

Su, Y., Awadallah, A. H., Khabsa, M., Pantel, P., Gamon, M., & Encarnacion, M. (2017). Building Natural Language

Interfaces to Web APIs. Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, 177–186.

https://doi.org/10.1145/3132847.3133009

Tool/function calling | LangChain. (n.d.). Retrieved September 14, 2024, from

https://python.langchain.com/v0.1/docs/modules/model_io/chat/function_calling/

https://swagger.io/specification/
https://swagger.io/specification/
https://github.com/OpenAPITools/openapi-generator
https://piembsystech.com/dynamic-binding-in-python-language/
https://piembsystech.com/dynamic-binding-in-python-language/
https://spacy.io/
https://spacy.io/
https://github.com/stanfordnlp/dspy
https://doi.org/10.1145/3132847.3133009
https://doi.org/10.1145/3132847.3133009
https://python.langchain.com/v0.1/docs/modules/model_io/chat/function_calling/
https://python.langchain.com/v0.1/docs/modules/model_io/chat/function_calling/

References

Tutorial: ChatGPT Over Your Data. (2023, February 6). LangChain Blog.

https://blog.langchain.dev/tutorial-chatgpt-over-your-data/

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E., Le, Q., & Zhou, D. (2023). Chain-of-Thought
Prompting Elicits Reasoning in Large Language Models (arXiv:2201.11903). arXiv. http://arxiv.org/abs/2201.11903

What Is NLP (Natural Language Processing)? | IBM. (2021, September 23).

https://www.ibm.com/topics/natural-language-processing

Why Visual Studio Code? (n.d.). Retrieved October 22, 2024, from https://code.visualstudio.com/docs/editor/whyvscode

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., & Cao, Y. (2023). ReAct: Synergizing Reasoning and Acting in
Language Models (arXiv:2210.03629). arXiv. http://arxiv.org/abs/2210.03629

Zafin, E. at. (2023, August 15). Bridging the Gap: Exploring use of Natural Language to interact with Complex Systems.

Engineering at Zafin.

https://medium.com/engineering-zafin/bridging-the-gap-exploring-using-natural-language-to-interact-with-complex-s

ystems-11c1b056cc19

https://blog.langchain.dev/tutorial-chatgpt-over-your-data/
https://blog.langchain.dev/tutorial-chatgpt-over-your-data/
http://arxiv.org/abs/2201.11903
https://www.ibm.com/topics/natural-language-processing
https://www.ibm.com/topics/natural-language-processing
https://code.visualstudio.com/docs/editor/whyvscode
http://arxiv.org/abs/2210.03629
https://medium.com/engineering-zafin/bridging-the-gap-exploring-using-natural-language-to-interact-with-complex-systems-11c1b056cc19
https://medium.com/engineering-zafin/bridging-the-gap-exploring-using-natural-language-to-interact-with-complex-systems-11c1b056cc19
https://medium.com/engineering-zafin/bridging-the-gap-exploring-using-natural-language-to-interact-with-complex-systems-11c1b056cc19

