
By Team: Red
Old Dominion University
CS 410
Fall 2024

Humanize Web APIs, without the headache

Table of Contents
I. Table of Contents ………………………………………….……………………………………………….………….…….. Slide 2 (Everyone)

II. Team Bios ……………………..…………………………………………………………………………….……………………. Slide 3 (John)

III. Feasibility ……………..………………………………………………….…………………………………………….…………. Slide 6 (John)

A. The Societal Problem ………………………………………………………………………………………….. Slide 8 (John)

B. Elevator Pitch ……………………………………………………………………………………………………… Slide 9 (John)

C. Problem Statement ……………………………………………………………………………………………… Slide 8 (John)

D. Problem Characteristics ………………………………………………………………………………………. Slide 12 (Kobe)

E. Current Process Flow ………………………………………………………………………………………….. Slide 14 (Chase/John)

F. Solution …….. Slide 23 (Chase)

G. Solution Statement ……………………………………………………………………………………………… Slide 24 (Chase)

H. Solution Characteristics ……………………………………………………………………………………… Slide 25 (Chase)

I. Solution Process Flow ………………………………………………………………………………………… Slide 26 (Andrew)

J. What It Will Do ……………………………………………………………………………………………………. Slide 28 (Fred)

K. What It Will Not Do …………………………………………………………………………………………….. Slide 28 (Fred)

L. Competition Matrix …………………………………………………………………………………………….. Slide 30 (Kobe)

IV. Design …….. Slide 37

A. Feature table ……………………………………………………………………………………………………….. Slide 38

B. Software / hardware tools ……………………………………………………………………………………. Slide 40

C. Development Tools ……………………………………………………………………………………………… Slide 41 (Diya)

D. Work breakdown structure overview ………………………………………………………………….. Slide 42

E. Algorithms ………. Slide 44

F. Major Functional Components ……………………………………………………………………………. Slide 45 (John/Diya)

G. Entity Relation Diagram ……………………………………………………………………………………….. Slide 50

H. Identified Risks and Mitigations …………………………………………………………………………… Slide 51 (Fred, John, Andrew, Diya)

I. Conclusion ……… Slide 62 (John)

V. Appendix A: REST API tools ……………………………………………………………………………………………… Slide 63 (Sean)

VI. References …… Slide 68

Team Bios - 1/3

John Hicks
A part-time Computer Science Major at ODU, transfer student from Tidewater Community
College (TCC) where he earned his Associate of Science with a specialization in Computer Science.
John has been employed full-time in software development and IT roles during most of his time in
school. John began his journey into software development when his parents’ small business
needed a website upgrade from Microsoft Frontpage to WordPress. On understanding
WordPress’s hook and filter mechanism, John’s imagination was kindled in wondering what other
ways of writing software there might be. That curiosity turned to flame and was formed into skill
with the help of many friends, family, internet contributors, workplace mentors and school faculty.

Freddie Boateng
A Computer Science major with a minor in Cybersecurity. He is from Northern Virginia and
currently working as a Cybersecurity Engineer with Zachary Piper Solutions. He strives to always
improve and stay updated to the world of technology, enabling him to reach his goals

Team Bios - 2/3

Kobe Franssen
Full time Computer Science major at ODU while also working part time as System
Administrator at the ODU Computer Science Consultant Group. Experienced in Java,
Python, C++ and API handling such as with Discord Bots. Love working on cars and
has 3 cats.

Diya Patel
A Junior at ODU, pursuing a Bachelor’s degree
in Computer Science. She is interested in
learning about the newest advancements in
web development and artificial intelligence.
She has an ongoing desire to take on new tasks
and expand her skill set.

Andrew Bausas
I am a computer science major from Virginia
Beach. I am to improve my skills and
eventually use them to make games.

Team Bios - 3/3

Sean Baker
Sean’s journey into computer science has been unconventional and spans both time and
institutions. A transfer student from Piedmont Virginia Community College (PVCC), Sean
earned his associate degree in computer science in 2016, but his tech journey began much
earlier. At 14, he built his first WordPress site to supplement hsi allowance, which led to
articles like “Ten reasons this IPhone will succeed”. Since then, rather than pursuing a
conventional corporate path, Sean has prioritized creativity and innovation, which has led
him to work on projects that push technological boundaries, including contributing to
self-driving car technologies with Edison2 and developing die cast automation software for
VisiTrak Worldwide and Rockwell Automation. His self-taught, autodidactic learning
approach has defined his career. Set to graduate this spring, Sean hopes to pursue a
masters degree.

Chase Wallace
A Computer Science and Biomedical Sciences double
major from Norfolk with a strong interest in
neuroscience and artificial intelligence. He is always
ready to learn new skills and broaden his horizons
with challenging new projects.

Feasibility

Why talk with Web APIs? - The Societal Problem

● User interfaces don’t speak the user’s language, but users rely on apps to make things happen.

● Developers are motivated to add Natural Language Processing (NLP) features to their apps, but

doing so is painstaking.

● Things happen in Web apps through Web Application Programming Interfaces (APIs).

● It is complex to turn natural language to structured data, which is what Web APIs must receive in

order to work (Su et al., 2017).

● Open source contributors and researchers are attempting to use new Large Language Models

(LLMs) to create Web API payloads (Zafin, 2023; Tool/Function Calling | LangChain, n.d), but

there is not mature tooling in this emerging part of the market.

Why CueCode? - Problem Statement

● No LLM tools available for Web API payload generation focus on putting a human or

deterministic business logic “in the loop” of payload generation.

● Enterprises and Software-as-a-Service (Saas) applications cannot afford to make every

function call an LLM recommends for data entry or triggering actions; that is too high risk.

● The inability for current tools to manage the risks of LLM usage gates Enterprises and

SaaS providers from developing AI applications while LLM technology matures.

=> There’s demand for API call payload generation, but no simple, operationalized, and
risk-aware tooling for it.

CueCode will use this opportunity to commoditize the process of turning natural language into

API payloads against existing existing Web APIs.

● CueCode lets a Web application generate REST API calls from natural language with minutes of
development time.

● A good OpenAPI specification and a few key questions are all CueCode needs to start generating
REST API requests.

● CueCode can add AI features to your app without any backend code changes or specialized NLP
or large language model (LLM) skills.

● This allows rapid development of natural language processing features, without having to risk
taking humans or business rules out of the loop.

Elevator Pitch

Quick example

● Example input: “I would like to book a hospital appointment on the 20th of October at 2pm for a
medical checkup.”

● Output: a full REST API payload for creation of an appointment on the 20th of October, in the
structured data format the REST API expects:

○ POST https://the-appointment-app.com/api/v1/appointments/

○ {"client":{"last_name": "Davis", "first_name":"Patricia"}, date: “2024-10-20”,
time: “1400” }

● This output can be shown to the user, put through business logic, or sent immediately to the
appointments REST API.

● The developer now has a choice about how to handle the suggested API payload.

Problem Characteristics - NLP/LLM challenges

Problems with current NLP/LLM processing for creating API calls:

● Require awareness of prompt engineering and other more complex AI techniques
○ => Time/money upskilling fullstack and Web developers.

● The NLP tools for generating API calls today are stand-alone programs and libraries that don't present a
unified, opinionated solution.

○ => Developers are left building one-off solutions.
○ => Heavy boilerplate/in-house frameworks.

● Humans and application logic are kept out of the loop in other approaches; this is high-risk.

Problem Characteristics - use of API specs

● Since APIs are commonly described with specifications, why not use those?
○ (Keep a clean contract between system components.)

● OpenAPI is the leading industry standard way to describe REST (REpresentational State Transfer)

APIs.

● However, there are no complete frameworks that leverage OpenAPI specifications when turning

natural language to REST API calls.

Problem Characteristics - NLP/LLM challenges

Problems with current NLP/LLM processing for creating API calls:

● Limiting Responses to fit an API Structure Is Difficult

● Lack of Understanding of Entity Relationships

● Absence of a Consistent Framework for Web Developers

Current Process Flow

Two example use cases:
1. Interactive with your end user, validated by user after generation
2. Batch oriented, processed with business logic generation

1. Design the interface between the customer’s application and the API call generation code.

2. (Not shown) Encode the OpenAPI spec structure for the algorithm to use later when generating and
validating payloads.

3. Tag entities and their relationships in the natural language input.

4. (Not Shown) Tell the LLM about the API structure

5. Make the existing application aware of LLM API call suggestions

2.3 Current Process Flow (Validation)

● Verify output is in JSON format (LangChain [9], Guidance AI [6])

● Once an API call is generated, confirm its structure conforms to the schema defined in the
OpenAPI spec.

● Confirm that the sequence of data manipulations is consistent with the new/modified entities’
relationships.

● For interactive applications confirm the generated API call with the user, and for batch
applications, validate the generated API call using business logic.

6. Validate that the generated payloads conform to the OpenAPI spec.

Current Process Flow

A solution for generating API calls would ideally address the following points.

● Design the interface between the customer’s application and the API call
generation code.

● Encode the OpenAPI spec structure for the algorithm to use later when
generating and validating payloads.. Options:

○ In Langchain, build Python classes that define the expected structure of the
LLM response (Tool/Function Calling | LangChain, n.d.).

○ OpenAI, use Function Calling schema specification and hope for the best.
(OpenAI Platform, n.d.; Tool/Function Calling | LangChain, n.d.)

● Tag entities and their relationships in the natural language input.
● Validate that the generated payloads conform to the OpenAPI spec.
● Tell the LLM about the API structure:

○ One-shot prompt is common in examples, but LLMs struggle to consistently
generate responses that are conformant to the spec
(Microsoft/Prompt-Engine, 2022/2024).

● Make the existing application aware of LLM API call suggestions:
○ For interactive apps, show the suggestions to the user.
○ For batch processing, push the generated API calls through business logic.

● Validation

No single application or
framework on the market
addresses all of these
concerns, and implementing
these solutions manually for
each application that wants
these features is tedious
and requires expertise in
using LLMs.

Solution

CueCode will provide a comprehensive service for creating Web API calls from natural language input in

a risk-aware, accurate manner that puts developers - and, by extension, users - in control of when API

calls are invoked.

Solution Statement

What that means:

Developers will be able to use existing API specifications, which CueCode makes understandable by
LLMs, to generate the content of their API calls in conformance with their API spec.

So, our client service representative can provide input to a booking application using CueCode in
natural language, “I called Patricia Davis and rescheduled her appointment from August 1st to August
16th.” The application can then use CueCode’s libraries, which have been configured using
documentation about the structure of their data, to generate the following Web API request with a
JSON request body:

POST https://the-appointment-app.com/api/v1/appointments/

{"request":{"reschedule":{"last": "Davis", "first":"Patricia", "from":{"month":8,
"day":1,"year":2024}, "to":{"month":8, "day":1,"year":2024}}}}

Which would then be used by the booking application to perform the API call, which will change the
appointment date in their database, or prompt the user for additional information.

Solution Characteristics
Problem Characteristics

- Forcing end users to fill out lots of
forms for input is both limiting and
tedious

- There is no easy way to implement
using NLP to parse user input for
existing applications

- It is difficult to make LLMs aware of the
structure of data expected from a
natural language prompt

- There is no standardized solution for
translating natural language into
structured data

- Translating natural language into
structured data requires prompt
engineering and other skill sets that do
not belong to a typical front end or full
stack developer

- LLM integration can cause data
mutation and incorrect parsing of
information

Solution Characteristics

- CueCode leverages LLM technology to
parse natural language into structured
data to generate API calls, simplifying
the process of data entry.

- CueCode provides libraries to front end
and full stack developers to easily
integrate NLP into their existing
applications

- Existing API specifications provide
machine-readable input to guide LLMs
into parsing user input from natural
language, saving developers time and
resources

- CueCode facilitates
Human-in-the-Loop feedback to allow
the end user to review the generated
data in the existing user interface

Solution Process Flow (configuration)

At configuration time:

● Developers ensure their OpenAPI specification is accurate.

● Developer uploads their API specification to CueCode via the Developer Portal

● Developer answer a few configuration questions.

● CueCode stores the structure and requirements for the API to aid the LLM in generating responses at

runtime.

● All of this is transparent to the Developer’s customers/end-users.

Use CueCode in your application:

● Program your app to pass natural

language text to CueCode libraries.

● Let the CueCode service figure out

the structured data contained in the

text.

● Use CueCode’s extracted

structured data within the existing

application’s data model. e.g.:
○ Show suggestions to the user

○ Perform API calls in a batch job

○ Validate through business rules

○ Whatever the use case requires

Solution Process Flow (runtime)

What it Will Do

● Will implement NLP capabilities to enable and
understand natural language

● Will offer a user friendly interface (API client
libraries) that developers can use

● Will provide a Developer Portal web application,
where developers can upload API specifications
and configure their CueCode service

● Will provide tools for customizing NLP models to
fit specific domains/industries ensuring better
performance for unique use cases.

● Will include documentation and support
resources to help developers implement and
troubleshoot various systems effectively.

● Will use REST API specifications, enabling
context-aware replies that complement the
distinct functionality and data structure of each
application.

● Will allow for real time analysis of natural
language and REST API call payload generation,
enhancing user experience through immediate
feedback and interactions.

What it Will Not Do

● Will not replace human judgment when interpreting language in terms of making subjective

decisions beyond its programming.

● Will not act as an AI agent

● Will not provide user-facing applications; developers will need to build their own solutions

and install any necessary software/applications they need.

● Will not automatically make API calls on users' behalf; requests must first have human

permission before being fulfilled.

● Will not have programming tutorials, developers will need to possess knowledge of

programming to utilize CueCode effectively.

● As a student project, CueCode will not generate XML REST API payloads or GraphQL API

payloads

Competition Matrix - Introduction

CueCode OpenAI
Functions

Google Natural
Language API Spacy.io LangChain GenKit Phone AI

Alexa, Siri,...

✔- Full Implementation

P - Partial Implementation

Feature CueCode OpenAI
Functions

Google Natural
Language API Spacy.io LangChain GenKit Phone AI

Alexa, Siri,...

Entity recognition ✔ ✔ ✔ P ✔

Plug and Play ✔ P P P
Retrieval
Augmented
Generation

✔ ✔ ✔ ✔

API call generation
as a service

✔ P P P P

Competition Matrix - ET

Feature CueCode OpenAI
Functions

Google Natural
Language API Spacy.io LangChain GenKit Phone AI

Alexa, Siri,...

Entity recognition ✔ ✔ ✔ P ✔

✔- Full Implementation

P - Partial Implementation

Example Prompt:
“I would like to book a hospital appointment on the 20th of
October for a medical checkup.”

With entity recognition:
Book, 20th october, medical checkup

Competition Matrix - PaP

Feature CueCode OpenAI
Functions

Google Natural
Language API Spacy.io LangChain GenKit Phone AI

Alexa, Siri,...

Plug and Play ✔ P P P

✔- Full Implementation

P - Partial Implementation

Competition Matrix - RAG

Feature CueCode OpenAI
Functions

Google Natural
Language API Spacy.io LangChain GenKit Phone AI

Alexa, Siri,...

Retrieval
Augmented
Generation

✔ ✔ ✔ ✔

✔- Full Implementation

P - Partial Implementation

LLM

Content

OUTPUTINPUT

Competition Matrix - service

Feature CueCode OpenAI
Functions

Google Natural
Language API Spacy.io LangChain GenKit Phone AI

Alexa, Siri,...

API call generation
as a service

✔ P P P P

✔- Full Implementation

P - Partial Implementation

INPUT API call

Feature CueCode OpenAI
Functions

Google Natural
Language API Spacy.io LangChain GenKit Phone AI

Alexa, Siri,...

Entity recognition ✔ ✔ ✔ P ✔

Plug and Play ✔ P P P
Retrieval
Augmented
Generation

✔ ✔ ✔ ✔

API call generation
as a service

✔ P P P P

Competition Matrix - review

Design: How will we do it?
Notes on our engineering and current concept for CueCode’s implementation

Feature table

Category Feature Runtime Config-time End user Developer

Developer
Portal

Login / Authentication ✔ ✔

Account creation / deletion ✔ ✔

CueCode
Config

REST API definition management ✔ ✔

Upload and manage OpenAPI specifications ✔ ✔

REST API configuration wizard ✔ ✔

CueCode
runtime

Process natural language and turn it into REST
API payloads

✔

Map natural language to customer’s data entities
via search or API call

✔

Client libraries Authentication against CueCode service ✔

Software / Hardware Tools

● Frontend:

○ HTML

○ CSS

○ Bootstrap 5

○ Vanilla JavaScript

● API clients

○ Swagger CodeGen

● Application layer

○ Python

○ Flask Web framework

○ Jinja HTML templating

● Application libraries

○ Spacy.io

○ Thin Ollama client library

● Persistence layer

○ PostgreSQL
○ PgVector

● LLM

○ Ollama

○ Llama 3.2

● Third-party

○ identity service

○ Transactional email

● Testing

○ Jest

○ PyUnit

● CI/CD

○ GitHub Actions

○ Docker registry

● Hardware

○ GPU-equipped Kubernetes node(s) in CS

Systems Group cluster

Development Tools

Version Control:

○ Git with GitHub
○ - The industry standard for version control is GitHub With Git. Using branching, pull requests, and issue tracking, it

promotes easy collaboration and guarantees that teams function well even on challenging projects. With GitHub's
built-in capabilities, we can keep an eye on changes, work together with other team members, and protect our
codebase with top-notch security measures.

Integrated Development Environment (IDE):

○ VS Code
○ - VS Code is a top option for development across many languages and frameworks because of its wide ecosystem of

extensions and high esteem for flexibility. Its Git connection and real-time collaboration tool makes coding and team
coordination easier and guarantee that our project stays structured and productive.

○

Continuous Integration (CI) & Continuous Deployment (CD):

○ GitHub Actions and Workflows

We manage our CI/CD pipelines with GitHub Actions, integrating deployment and testing into an easier process.
Given the flexibility that GitHub Workflows offer in automating processes across the development lifecycle, we can
confidently deploy, minimize manual intervention, and maintain code quality.

Unit testing

Integration
testing - LLM

integration and
other

System testing

User
acceptance

testing

Work breakdown structure overview

CueCode

User interfaces

Developer Portal:
Configuration

Wizard

Developer Portal:
Account

management

Developer Portal:
Monitoring

Client libraries

AlgorithmsProduct mgt

Requirements

User stories

UI Mockups

Sprint planning

Mentor
feedback

Prompt
engineering

OpenAPI spec
encoding/
decoding

OpenAPI spec
vectorization

API payload
ordering

Database

OpenAPI specs

OpenAPI spec
vectorization and

other encoding

Developer Portal
config

API credentials

Testing

● Algorithm to encode OpenAPI spec in a searchable format, likely using vectorization at

config time and cosine similarity search at runtime.

● NLP - detect entities, actions, relationships in text.

● Given entities and text, find the most relevant API endpoints for which to generate

payloads (likely involves cosine similarity search).

● Determine if live API data is needed to translate natural language, or if data in the natural

language is sufficient to create payloads. Fetch any data needed.

● LLM Function Calls for generating consistently structured JSON output

● Prompt LLM to generate API payload using defined function calls

Algorithms

● Map natural language to known entities in the existing API

● Validate structure and of generated payloads

● Validate ordering of generated payloads, given dependencies

● Determine authentication needed based on OpenAPI spec and prompt Developer for it at

configuration

Algorithms

Major Functional Components

● Client libraries for customers to use for integrating with CueCode’s service
○ Bindings for the CueCode runtime API

● Python modular monolith:
○ All modules exposed via Flask, a Python Web framework

○ Module: Web API payload Generation- receives natural language input and generates Web API calls from it.

○ Module: Developer Portal - account registration/management, API spec upload, configuration, generation audit

and monitoring

○ Horizontally scalable via 12-factor app methodology

● PostgreSQL (Postgres) persistence:
○ PgVector extension for storing vectors generated by the LLM

○ Normal Postgre tables for customer accounts, configuration, generation monitoring and audit information

● Ollama:
○ A Web service and set of standardized LLM-call APIs that allows us to swap LLMs used while maintaining the

same API contract with our Python backend.

● Third-party identity service:
○ For developer portal

○ TBD on how/whether CueCode runtime API traffic would use the same identity provider for authentication.

Major Functional Components Diagram - Configuration

Major Functional Components Diagram - Runtime - Customer Application

Major Functional Components Diagram - Runtime - CueCode

Major Functional Components Diagram - Overview

Entity Relation Diagram (ERD)

Risks the CueCode project faces and their mitigations

Our risk coding convention:

● “O” - Operational risks

● “R” - Regulatory risks

● “T” - Technical risks

Risks

Risks - Customer, Operational, Regulatory

Very likely (5) T3

Likely (4) T4

Possible (3) T7 T5 T1 O1

Unlikely (2)
R2’ R1, R2,

T6 T2

Rare (1) O2’ O2 O1’

(1)
Insignifican

t

(2)
 Minor

(3)
Moderate

(4)
Significant

(5)
Catastrophi

c

O1 - Unable to procure GPU Hardware for
development.

● Mitigation approach: Control
● Mitigation:

○ In Spring ‘25, execute an already
approved request for GPU time
with the CS Systems Group

O2 - CueCode customers may overlook critical
security or operational risks when generating
API calls.

● Mitigation approach: Continue
Monitoring

● Mitigation: Perform thorough logging,
audits to provide detailed error checking
tools for developers.

P
ro

b
ab

ili
ty

Consequences

Risks - Customer, Operational, Regulatory

R1 - The use of API specifications might infringe
on proprietary or closed API usage policies,
leading to legal issues.

● Mitigation approach: Avoid
● Mitigation: Check downstream API usage

against known limits, check with
professionals about API licenses, develop
and publish a platform abuse notice
process for API providers to use, and stay
away from violating proprietary API
standards and procedures.

Very likely (5) T3

Likely (4) T4

Possible (3) T7 T5 T1

Unlikely (2)
R2’ R1, R2,

T6 T2

Rare (1) O2’, R1’ O1’

(1)
Insignifican

t

(2)
 Minor

(3)
Moderate

(4)
Significant

(5)
Catastrophi

c

P
ro

b
ab

ili
ty

Consequences

Risks - Customer, Operational, Regulatory

R2 - Storage of API credentials makes CueCode
an enticing target for cybersecurity attacks.

● Mitigation approach: Control
● Mitigation:

○ Legal - apply terms of use that
protect CueCode in the case of
data breach.

○ Technical - separate tenant
credentials with care.

○ Technical - guide developers to use
scoped API keys; use OAuth2
where possible for user-specific
data

Very likely (5) T3

Likely (4) T4

Possible (3) T7 T5 T1

Unlikely (2) R2’ R2, T6 T2

Rare (1) O2’, R1’ O1’

(1)
Insignifican

t

(2)
 Minor

(3)
Moderate

(4)
Significant

(5)
Catastrophi

c
P

ro
b

ab
ili

ty

Consequences

Risks - Technical

T1 - LLM won't generate API calls without
few-shot prompt examples.

● Mitigation approach: Control
● Mitigation:

○ Validation process for prompt
engineering.

○ Require that developers include a
few examples in their OpenAPI
specs.

Very likely (5) T3

Likely (4) T4

Possible (3) T7 T5 T1

Unlikely (2) R2’, T1’ T6 T2

Rare (1) O2’, R1’ O1’

(1)
Insignifican

t

(2)
 Minor

(3)
Moderate

(4)
Significant

(5)
Catastrophi

c
P

ro
b

ab
ili

ty

Consequences

Risks - Technical

T2 - LLM won't generate API calls without
hundreds or thousands of examples.

● Mitigation approach: Continue
Monitoring.

● Mitigation:
○ If risk is realized, then pivot to

change value propositions and
require backend development
from the customer

Very likely (5) T3

Likely (4) T4

Possible (3) T7 T5

Unlikely (2) R2’, T2’ T6 T2

Rare (1) O2’, R1’ O1’

(1)
Insignifican

t

(2)
 Minor

(3)
Moderate

(4)
Significant

(5)
Catastrophi

c
P

ro
b

ab
ili

ty

Consequences

Risks - Technical

T3 - Vastness of frontend API client ecosystem
precludes building CueCode client libraries for
all popular languages and frameworks.

● Mitigation approach: Transfer
● Mitigation:

○ Use Swagger CodeGen for our
own CueCode backend API.

○ Open-source our client library
code.

T4 - Potential exposure of sensitive API
information through generated API calls.

● Mitigation approach: Control
● Mitigation: separate API authentication

and LLM generation concerns in the
CueCode payload generation algorithm.

Very likely (5) T3

Likely (4) T4

Possible (3) T7, T3’ T5

Unlikely (2) R2’, T1’,
T2’ T6

Rare (1) O2’, R1’ T4’ O1’

(1)
Insignifican

t

(2)
 Minor

(3)
Moderate

(4)
Significant

(5)
Catastrophi

c

P
ro

b
ab

ili
ty

Consequences

Risks - Technical

T5 - Obsolescence of vendor libraries and
services in the greenfield AI market.

● Mitigation approach: Avoid
● Mitigation:

○ Use OLLama backend
communication with the LLM,
allowing swappable LLM models
according to CueCode’s needs.

○ Use PgVector, an extension to the
FOSS PostgreSQL RDBMS, for
vector storage.

○ Develop a simple Python backend
without undue reliance popular AI
libraries, most of which are pre-v1
and, incidentally, overfit for
CueCode’s purpose.

Very likely (5)

Likely (4)

Possible (3) T7, T3’ T5

Unlikely (2) R2’, T1’,
T2’ T6 T2

Rare (1) O2’, R1’ T4’, T5’ O1’

(1)
Insignifican

t

(2)
 Minor

(3)
Moderate

(4)
Significant

(5)
Catastrophi

c

P
ro

b
ab

ili
ty

Consequences

Risks - Technical

T6 - Our validation processes might find that
CueCode might require a lot of time to provide
accurate results, especially if generating many
API payloads.

● Mitigation approach: Continue
Monitoring

● Mitigation: Defer development of
frontend libraries until we know whether
backend processing takes so long as to
require asynchronous processing, instead
of request-response.

Very likely (5)

Likely (4)

Possible (3) T7, T3’ T6

Unlikely (2) R2’, T1’,
T2’ T6’ T2

Rare (1) O2’, R1’ T4’, T5’ O1’

(1)
Insignifican

t

(2)
 Minor

(3)
Moderate

(4)
Significant

(5)
Catastrophi

c

P
ro

b
ab

ili
ty

Consequences

Risks - Technical

T7 - Elevated demand may surpass the capacity
of the system, resulting in disruptions or delays.

● Mitigation approach: Continue
Monitoring

● Mitigation: As traffic increases,
scalability and efficiency are ensured
through:

○ Starting development with
architecture that allows scaling
(containerized 12-factor app)

○ Regular performance testing
○ Load balancing.

Very likely (5)

Likely (4)

Possible (3) T7, T3’

Unlikely (2) R2’, T1’,
T2’ T6’ T2

Rare (1) O2’, R1’,
T7’ T4’, T5’ O1’

(1)
Insignifican

t

(2)
 Minor

(3)
Moderate

(4)
Significant

(5)
Catastrophi

c

P
ro

b
ab

ili
ty

Consequences

Risks - Mitigation landscape

(5)

(4)

(3) T3’

(2) R2’,
T1’, T2’ T6’

(1) O2’,
R1’, T7’ T4’, T5’ O1’

(1) (2) (3) (4) (5)

P
ro

b
ab

ili
ty

Consequences

(5) T3

(4) T4

(3) T7 T5 T1 O1

(2) R1,
R2, T5,

T6
T2

(1) O2

(1) (2) (3) (4) (5)

P
ro

b
ab

ili
ty

Consequences

P
ro

b
ab

ili
ty

Before
After

Conclusion

● Leverages existing tools and techniques

● Develops a framework for developers

● Delights users

● Reduces risk for important actions/data entry

=> so that you can Humanize Web APIs, without the headache.

Appendix A

REST API tooling

How do we currently get Json Payloads

Swagger Hub, Openapi…Postman, requests libraries
And many many more

Swagger Hub Example

API TESTING
Mock Servers
API Detection

Example Postman Usage

References

References

About continuous integration with GitHub Actions. (n.d.). GitHub Docs. Retrieved October 22, 2024, from

https://docs.github.com/en/actions/about-github-actions/about-continuous-integration-with-github-actions

About Git. (n.d.). GitHub Docs. Retrieved October 22, 2024, from

https://docs.github.com/en/get-started/using-git/about-git

Against LLM maximalism · Explosion. (2023, May 18). https://explosion.ai/blog/explosion.ai

Baker, S. (2024). Paragonsean/ChatBotAsync [Python]. https://github.com/paragonsean/ChatBotAsync (Original work

published 2024)

Cloud Natural Language. (n.d.). Google Cloud. Retrieved September 26, 2024, from

https://cloud.google.com/natural-language

Evaluation | Genkit. (n.d.). Firebase. Retrieved September 14, 2024, from

https://firebase.google.com/docs/genkit/evaluation

Firebase Genkit. (n.d.). Retrieved September 14, 2024, from https://firebase.google.com/docs/genkit

Function Calling. (n.d.). Retrieved September 14, 2024, from https://platform.openai.com/docs/guides/function-calling

https://docs.github.com/en/actions/about-github-actions/about-continuous-integration-with-github-actions
https://docs.github.com/en/actions/about-github-actions/about-continuous-integration-with-github-actions
https://docs.github.com/en/get-started/using-git/about-git
https://docs.github.com/en/get-started/using-git/about-git
https://explosion.ai/blog/explosion.ai
https://github.com/paragonsean/ChatBotAsync
https://cloud.google.com/natural-language
https://cloud.google.com/natural-language
https://firebase.google.com/docs/genkit/evaluation
https://firebase.google.com/docs/genkit/evaluation
https://firebase.google.com/docs/genkit
https://platform.openai.com/docs/guides/function-calling

References

Learn Data with Mark (Director). (2023, July 26). Returning consistent/valid JSON with OpenAI/GPT [Video recording].

https://www.youtube.com/watch?v=lJJkBaO15Po

Lorica, B. (2024, January 25). Expanding AI Horizons: The Rise of Function Calling in LLMs. Gradient Flow.

https://gradientflow.com/expanding-ai-horizons-the-rise-of-function-calling-in-llms/

Merritt, R. (2023, November 15). What Is Retrieval-Augmented Generation aka RAG? NVIDIA Blog.

https://blogs.nvidia.com/blog/what-is-retrieval-augmented-generation/

Microsoft/prompt-engine. (2024). [TypeScript]. Microsoft. https://github.com/microsoft/prompt-engine (Original work

published 2022)

Natural Language Processing [NLP] Market Size | Growth, 2032. (n.d.). Retrieved September 14, 2024, from

https://www.fortunebusinessinsights.com/industry-reports/natural-language-processing-nlp-market-101933

OpenAI Platform. (n.d.-a). Retrieved September 10, 2024, from https://platform.openai.com

OpenAI Platform. (n.d.-b). Retrieved October 24, 2024, from https://platform.openai.com

https://www.youtube.com/watch?v=lJJkBaO15Po
https://www.youtube.com/watch?v=lJJkBaO15Po
https://gradientflow.com/expanding-ai-horizons-the-rise-of-function-calling-in-llms/
https://gradientflow.com/expanding-ai-horizons-the-rise-of-function-calling-in-llms/
https://blogs.nvidia.com/blog/what-is-retrieval-augmented-generation/
https://blogs.nvidia.com/blog/what-is-retrieval-augmented-generation/
https://github.com/microsoft/prompt-engine
https://www.fortunebusinessinsights.com/industry-reports/natural-language-processing-nlp-market-101933
https://www.fortunebusinessinsights.com/industry-reports/natural-language-processing-nlp-market-101933
https://platform.openai.com
https://platform.openai.com

References

OpenAPI Specification—Version 3.1.0 | Swagger. (n.d.). Retrieved September 10, 2024, from

https://swagger.io/specification/

OpenAPITools/openapi-generator. (2024). [Java]. OpenAPI Tools. https://github.com/OpenAPITools/openapi-generator

(Original work published 2018)

piembsystech. (2023, October 2). Dynamic Binding in Python Language. PiEmbSysTech.

https://piembsystech.com/dynamic-binding-in-python-language/

SpaCy · Industrial-strength Natural Language Processing in Python. (n.d.). Retrieved September 26, 2024, from

https://spacy.io/

Stanfordnlp/dspy. (2024). [Python]. Stanford NLP. https://github.com/stanfordnlp/dspy (Original work published 2023)

Su, Y., Awadallah, A. H., Khabsa, M., Pantel, P., Gamon, M., & Encarnacion, M. (2017). Building Natural Language

Interfaces to Web APIs. Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, 177–186.

https://doi.org/10.1145/3132847.3133009

Tool/function calling | LangChain. (n.d.). Retrieved September 14, 2024, from

https://python.langchain.com/v0.1/docs/modules/model_io/chat/function_calling/

https://swagger.io/specification/
https://swagger.io/specification/
https://github.com/OpenAPITools/openapi-generator
https://piembsystech.com/dynamic-binding-in-python-language/
https://piembsystech.com/dynamic-binding-in-python-language/
https://spacy.io/
https://spacy.io/
https://github.com/stanfordnlp/dspy
https://doi.org/10.1145/3132847.3133009
https://doi.org/10.1145/3132847.3133009
https://python.langchain.com/v0.1/docs/modules/model_io/chat/function_calling/
https://python.langchain.com/v0.1/docs/modules/model_io/chat/function_calling/

References

Tutorial: ChatGPT Over Your Data. (2023, February 6). LangChain Blog.

https://blog.langchain.dev/tutorial-chatgpt-over-your-data/

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E., Le, Q., & Zhou, D. (2023). Chain-of-Thought
Prompting Elicits Reasoning in Large Language Models (arXiv:2201.11903). arXiv. http://arxiv.org/abs/2201.11903

What Is NLP (Natural Language Processing)? | IBM. (2021, September 23).

https://www.ibm.com/topics/natural-language-processing

Why Visual Studio Code? (n.d.). Retrieved October 22, 2024, from https://code.visualstudio.com/docs/editor/whyvscode

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., & Cao, Y. (2023). ReAct: Synergizing Reasoning and Acting in
Language Models (arXiv:2210.03629). arXiv. http://arxiv.org/abs/2210.03629

Zafin, E. at. (2023, August 15). Bridging the Gap: Exploring use of Natural Language to interact with Complex Systems.

Engineering at Zafin.

https://medium.com/engineering-zafin/bridging-the-gap-exploring-using-natural-language-to-interact-with-complex-s

ystems-11c1b056cc19

https://blog.langchain.dev/tutorial-chatgpt-over-your-data/
https://blog.langchain.dev/tutorial-chatgpt-over-your-data/
http://arxiv.org/abs/2201.11903
https://www.ibm.com/topics/natural-language-processing
https://www.ibm.com/topics/natural-language-processing
https://code.visualstudio.com/docs/editor/whyvscode
http://arxiv.org/abs/2210.03629
https://medium.com/engineering-zafin/bridging-the-gap-exploring-using-natural-language-to-interact-with-complex-systems-11c1b056cc19
https://medium.com/engineering-zafin/bridging-the-gap-exploring-using-natural-language-to-interact-with-complex-systems-11c1b056cc19
https://medium.com/engineering-zafin/bridging-the-gap-exploring-using-natural-language-to-interact-with-complex-systems-11c1b056cc19

